Catalogue Search | MBRL
نتائج البحث
MBRLSearchResults
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
-
الضبطالضبط
-
مُحَكَّمةمُحَكَّمة
-
نوع العنصرنوع العنصر
-
الموضوعالموضوع
-
السنةمن:-إلى:
-
المزيد من المرشحاتالمزيد من المرشحاتالمصدراللغة
منجز
مرشحات
إعادة تعيين
6
نتائج ل
"Lenoir, Walter F."
صنف حسب:
The E. coli molecular phenotype under different growth conditions
2017
Modern systems biology requires extensive, carefully curated measurements of cellular components in response to different environmental conditions. While high-throughput methods have made transcriptomics and proteomics datasets widely accessible and relatively economical to generate, systematic measurements of both mRNA and protein abundances under a wide range of different conditions are still relatively rare. Here we present a detailed, genome-wide transcriptomics and proteomics dataset of
E. coli
grown under 34 different conditions. Additionally, we provide measurements of doubling times and
in-vivo
metabolic fluxes through the central carbon metabolism. We manipulate concentrations of sodium and magnesium in the growth media, and we consider four different carbon sources glucose, gluconate, lactate, and glycerol. Moreover, samples are taken both in exponential and stationary phase, and we include two extensive time-courses, with multiple samples taken between 3 hours and 2 weeks. We find that exponential-phase samples systematically differ from stationary-phase samples, in particular at the level of mRNA. Regulatory responses to different carbon sources or salt stresses are more moderate, but we find numerous differentially expressed genes for growth on gluconate and under salt and magnesium stress. Our data set provides a rich resource for future computational modeling of
E. coli
gene regulation, transcription, and translation.
Journal Article
A network of human functional gene interactions from knockout fitness screens in cancer cells
بواسطة
Lenoir, Walter F
,
Kim, Eiru
,
Srinivasan, Sanjana
في
Cancer
,
Cell Line, Tumor
,
Clustered Regularly Interspaced Short Palindromic Repeats - genetics
2019
Genetic interactions mediate the emergence of phenotype from genotype. The systematic survey of genetic interactions in yeast showed that genes operating in the same biological process have highly correlated genetic interaction profiles, and this observation has been exploited to infer gene function in model organisms. Such assays of digenic perturbations in human cells are also highly informative, but are not scalable, even with CRISPR-mediated methods. As an alternative, we developed an indirect method of deriving functional interactions. We show that genes having correlated knockout fitness profiles across diverse, non-isogenic cell lines are analogous to genes having correlated genetic interaction profiles across isogenic query strains and similarly imply shared biological function. We constructed a network of genes with correlated fitness profiles across 276 high-quality CRISPR knockout screens in cancer cell lines into a “coessentiality network,” with up to 500-fold enrichment for co-functional gene pairs, enabling strong inference of gene function and highlighting the modular organization of the cell.
Journal Article
DNA polymerase ι compensates for Fanconi anemia pathway deficiency by countering DNA replication stress
بواسطة
Shen, Xi
,
Hu, Qianghua
,
Lynn, Erica
في
Biological Sciences
,
CRISPR-Cas Systems - genetics
,
Cyclin-Dependent Kinase 4
2020
Fanconi anemia (FA) is caused by defects in cellular responses to DNA crosslinking damage and replication stress. Given the constant occurrence of endogenous DNA damage and replication fork stress, it is unclear why complete deletion of FA genes does not have a major impact on cell proliferation and germ-line FA patients are able to progress through development well into their adulthood. To identify potential cellular mechanisms that compensate for the FA deficiency, we performed dropout screens in FA mutant cells with a whole genome guide RNA library. This uncovered a comprehensive genome-wide profile of FA pathway synthetic lethality, including POLI and CDK4. As little is known of the cellular function of DNA polymerase iota (Pol ι), we focused on its role in the loss-of-function FA knockout mutants. Loss of both FA pathway function and Pol ι leads to synthetic defects in cell proliferation and cell survival, and an increase in DNA damage accumulation. Furthermore, FA-deficient cells depend on the function of Pol ι to resume replication upon replication fork stalling. Our results reveal a critical role for Pol ι in DNA repair and replication fork restart and suggest Pol ι as a target for therapeutic intervention in malignancies carrying an FA gene mutation.
Journal Article
Hierarchical organization of the human cell from a cancer coessentiality network
2018
Genetic interactions mediate the emergence of phenotype from genotype. Systematic survey of genetic interactions in yeast showed that genes operating in the same biological process have highly correlated genetic interaction profiles, and this observation has been exploited to infer gene function in model organisms. Systematic surveys of digenic perturbations in human cells are also highly informative, but are not scalable, even with CRISPR-mediated methods. As an alternative, we developed an indirect method of deriving functional interactions. We show that genes having correlated knockout fitness profiles across diverse, non-isogenic cell lines are analogous to genes having correlated genetic interaction profiles across isogenic query strains, and similarly implies shared biological function. We constructed a network of genes with correlated fitness profiles across 400 CRISPR knockout screens in cancer cell lines into a 'coessentiality network,' with up to 500-fold enrichment for co-functional gene pairs, enabling strong inference of human gene function. Modules in the network are connected in a layered web that gives insight into the hierarchical organization of the cell.
Paper
The E. coli molecular phenotype under different growth conditions
بواسطة
Lenoir, Walter F
,
Barrick, Jeffrey E
,
Smith, Bartram L
في
Bioinformatics
,
Carbon
,
Carbon sources
2017
Modern systems biology requires extensive, carefully curated measurements of cellular components in response to different environmental conditions. While high-throughput methods have made transcriptomics and proteomics datasets widely accessible and relatively economical to generate, systematic measurements of both mRNA and protein abundances under a wide range of different conditions are still relatively rare. Here we present a detailed, genome-wide transcriptomics and proteomics dataset of E. coli grown under 34 different conditions. Additionally, we provide measurements of doubling times and in-vivo metabolic fluxes through the central carbon metabolism. We manipulate concentrations of sodium and magnesium in the growth media, and we consider four different carbon sources glucose, gluconate, lactate, and glycerol. Moreover, samples are taken both in exponential and stationary phase, and we include two extensive time-courses, with multiple samples taken between 3 hours and 2 weeks. We find that exponential-phase samples systematically differ from stationary-phase samples, in particular at the level of mRNA. Regulatory responses to different carbon sources or salt stresses are more moderate, but we find numerous differentially expressed genes for growth on gluconate and under salt and magnesium stress. Our data set provides a rich resource for future computational modeling of E. coli gene regulation, transcription, and translation.
Paper
Identifying chemogenetic interactions from CRISPR knockout screens with drugZ
بواسطة
Angers, Stephane
,
Lenoir, Walter F
,
Medina Colic
في
Bioinformatics
,
CRISPR
,
Data processing
2019
Chemogenetic profiling enables the identification of gene mutations that enhance or suppress the activity of chemical compounds. This knowledge provides insights into drug mechanism-of-action, genetic vulnerabilities, and resistance mechanisms, all of which may help stratify patient populations and improve drug efficacy. CRISPR-based screening enables sensitive detection of drug-gene interactions directly in human cells, but until recently has largely been used to screen only for resistance mechanisms. We present drugZ, an algorithm for identifying both synergistic and suppressor chemogenetic interactions from CRISPR screens. DrugZ identifies synthetic lethal interactions between PARP inhibitors and both known and novel members of the DNA damage repair pathway. Additionally, drugZ confirms KEAP1 loss as a resistance factor for ERK inhibitors in oncogenic KRAS backgrounds and identifies additional cell-specific mechanisms of drug resistance. The software is available at github.com/hart-lab/drugz. Footnotes * Complete rewrite of the algorithm and expansion of data sets analyzed. * https://github.com/hart-lab/drugz
Paper