نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
11 نتائج ل "Susa, Anna C."
صنف حسب:
Submicrometer Emitter ESI Tips for Native Mass Spectrometry of Membrane Proteins in Ionic and Nonionic Detergents
Native mass spectrometry (native-MS) of membrane proteins typically requires a detergent screening protocol, protein solubilization in the preferred detergent, followed by protein liberation from the micelle by collisional activation. Here, submicrometer nano-ESI emitter tips are used for native-MS of membrane proteins solubilized in both nonionic and ionic detergent solutions. With the submicrometer nano-ESI emitter tips, resolved charge-state distributions of membrane protein ions are obtained from a 150 mM NaCl, 25 mM Tris-HCl with 1.1% octyl glucoside solution. The relative abundances of NaCl and detergent cluster ions at high m  / z are significantly reduced with the submicrometer emitters compared with larger nano-ESI emitters that are commonly used. This technique is beneficial for significantly decreasing the abundances (by two to three orders of magnitude compared with the larger tip size: 1.6 μm) of detergent cluster ions formed from aqueous ammonium acetate solutions containing detergents that can overlap with the membrane protein ion signal. Resolved charge-state distributions of membrane protein ions from aqueous ammonium acetate solutions containing ionic detergents were obtained with the submicrometer nano-ESI emitters; this is the first report of native-MS of membrane proteins solubilized by ionic detergents. Graphical Abstract
Charging of Proteins in Native Mass Spectrometry
Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism. Graphical Abstract ᅟ
Effects of Cations on Protein and Peptide Charging in Electrospray Ionization from Aqueous Solutions
The effects of eight different cations with ionic radii between 69 and 337 pm on the charging of peptides and proteins with electrospray ionization from aqueous acetate salt solutions are reported. Significant adduction occurs for all cations except NH 4 + , and the average protein charge is lower when formed from solutions containing salts compared with solutions without salts added. Circular dichroism and ion mobility results show the protein conformations are different in pure water compared with salt solutions, which likely affects the extent of charging. The average charge of protein and peptide ions formed from solutions with Li + and Cs + , which have Gibbs solvation free energies (GSFEs) that differ by 225 kJ/mol, is similar. Lower charge states are typically formed from solutions with tetramethylammonium and tetraethylammonium that have lower GSFE values. Loss of the larger cations that have the lowest GSFEs is facile when adducted protein ions are collisionally activated, resulting in the formation of lower analyte charge states. This reaction pathway provides a route to produce abundant singly protonated protein ions under native mass spectrometry conditions. The average protein and peptide charge with NH 4 + is nearly the same as that with Rb + and K + , cations with similar GSFE and ionic radii. This indicates that proton transfer from NH 4 + to proteins plays an insignificant role in the extent of protein charging in native mass spectrometry. Figure ᅟ
Collisional Cross-Sections with T-Wave Ion Mobility Spectrometry without Experimental Calibration
A method for relating traveling-wave ion mobility spectrometry (TWIMS) drift times with collisional cross-sections using computational simulations is presented. This method is developed using SIMION modeling of the TWIMS potential wave and equations that describe the velocity of ions in gases induced by electric fields. The accuracy of this method is assessed by comparing the collisional cross-sections of 70 different reference ions obtained using this method with those obtained from static drift tube ion mobility measurements. The cross-sections obtained here with low wave velocities are very similar to those obtained using static drift (average difference = 0.3%) for ions formed from both denaturing and buffered aqueous solutions. In contrast, the cross-sections obtained with high wave velocities are significantly greater, especially for ions formed from buffered aqueous solutions. These higher cross-sections at high wave velocities may result from high-order factors not accounted for in the model presented here or from the protein ions unfolding during TWIMS. Results from this study demonstrate that collisional cross-sections can be obtained from single TWIMS drift time measurements, but that low wave velocities and gentle instrument conditions should be used in order to minimize any uncertainties resulting from high-order effects not accounted for in the present model and from any protein unfolding that might occur. Thus, the method presented here eliminates the need to calibrate TWIMS drift times with collisional cross-sections measured using other ion mobility devices. Graphical Abstract ᅟ
Molecular mechanism of activation-triggered subunit exchange in Ca(2+)/calmodulin-dependent protein kinase II
Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.
Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II
Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones. How does memory outlast the lifetime of the molecules that encode it? One enzyme that is found in neurons and has been suggested to help long-term memories to form is called CaMKII. Each CaMKII assembly is typically composed of 12 to 14 protein subunits associated in a ring and can exist in either an “unactivated” or “activated” state. In 2014, researchers showed that CaMKII assemblies can exchange subunits with each other. Importantly, an active CaMKII can mix with an unactivated CaMKII and share its activation state. CaMKII may use this mechanism to spread information to the next generation of proteins – thereby allowing activation to outlast the lifespan of the initially activated proteins. However the molecular mechanism that underlies this process was not clear. Now, Bhattacharyya et al. – including some of the researchers involved in the 2014 work – address two questions about this mechanism. How do subunits exchange between CaMKII assemblies? And how does the activation of CaMKII initiate subunit exchange? A closed-ring hub ties the subunits of CaMKII together, similar to the organization of the segments in an orange. To undergo subunit exchange, the hub must open up to release and accept subunits. Bhattacharyya et al. have now uncovered an intrinsic flexibility in the hub that is triggered by a short peptide segment in CaMKII. This segment, which is exposed in activated CaMKII but not in the unactivated form, can crack open the hub ring by binding between the hub subunits, like a finger separating the segments of an orange. This allows the hub to flex and expand, and once open, the hub’s flexibility allows room for subunits to be released or accepted. Although this subunit exchange mechanism could be a powerful means for spreading the activated state throughout signaling pathways, the biological relevance of this phenomenon has not been clarified. However, the mechanistic framework provided by Bhattacharyya et al. may allow new experiments to be performed that test the consequences of subunit exchange in live cells and organisms. It could also enable investigations into the importance of subunit exchange in long-term memory.
Submicrometer Emitter ESI Tips for Native Mass Spectrometry of Membrane Proteins in Ionic and Non-ionic Detergents
Native mass spectrometry (native-MS) of membrane proteins typically requires a detergent screening protocol, protein solubilization in the preferred detergent, followed by protein liberation from the micelle by collisional activation. Here, submicrometer nano-ESI emitter tips are used for native-MS of membrane proteins solubilized in both non-ionic and ionic detergent solutions. With the submicrometer nano-ESI emitter tips, resolved charge-state distributions of membrane protein ions are obtained from a 150 mM NaCl, 25 mM Tris-HCl with 1.1% octyl glucoside solution. The relative abundances of NaCl and detergent cluster ions at high m/z are significantly reduced with the submicrometer emitters compared to larger nano-ESI emitters that are commonly used. This technique is beneficial for significantly decreasing the abundances (by two to three orders of magnitude compared to the larger tip size: 1.6 μm) of detergent cluster ions formed from aqueous ammonium acetate solutions containing detergents that can overlap with the membrane protein ion signal. Resolved charge-state distributions of membrane protein ions from aqueous ammonium acetate solutions containing ionic detergents were obtained with the submicrometer nano-ESI emitters, which is the first report of native-MS of membrane proteins solubilized by ionic detergents.
Molecular mechanism of activation-triggered subunit exchange in Ca 2+ /calmodulin-dependent protein kinase II
Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.
Molecular mechanism of activation-triggered subunit exchange in Ca.sup.2+/calmodulin-dependent protein kinase II
Activation triggers the exchange of subunits in Ca.sup.2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.
Variation in assembly stoichiometry in non-metazoan homologs of the hub domain of Ca2+/Calmodulin-dependent protein kinase II
The multi-subunit Ca2+/calmodulin-dependent protein kinase II (CaMKII) holoenzyme plays a critical role in animal learning and memory. The kinase domain of CaMKII is connected by a flexible linker to a C-terminal hub domain that assembles into a 12- or 14-subunit scaffold that displays the kinase domains around it. Studies on CaMKII suggest that the stoichiometry and dynamic assembly/disassembly of hub oligomers may be important for CaMKII regulation. Although CaMKII is a metazoan protein, genes encoding predicted CaMKII-like hub domains, without associated kinase domains, are found in the genomes of some green plants and bacteria. We show that the hub domains encoded by three related green algae, Chlamydomonas reinhardtii, Volvox carteri f. nagarensis, and Gonium pectoral, assemble into 16-, 18-, and 20-subunit oligomers, as assayed by native protein mass spectrometry. These are the largest known CaMKII hub domain assemblies. A crystal structure of the hub domain from Chlamydomonas reinhardtii reveals an 18-subunit organization. We identified four intra-subunit hydrogen bonds in the core of the fold that are present in the Chlamydomonas hub domain, but not in metazoan hubs. When six point mutations designed to recapitulate these hydrogen bonds were introduced into the human CaMKII-α hub domain, the mutant protein formed assemblies with 14 and 16 subunits, instead of the normal 12- and 14-subunit assemblies. Our results show that the stoichiometric balance of CaMKII hub assemblies can be shifted readily by small changes in sequence.