Catalogue Search | MBRL
نتائج البحث
MBRLSearchResults
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
-
الضبطالضبط
-
مُحَكَّمةمُحَكَّمة
-
نوع العنصرنوع العنصر
-
الموضوعالموضوع
-
السنةمن:-إلى:
-
المزيد من المرشحاتالمزيد من المرشحاتالمصدراللغة
منجز
مرشحات
إعادة تعيين
70
نتائج ل
"拉伸强度"
صنف حسب:
Tensile and Flexural Properties of Ultra High Toughness Cemontious Composite
بواسطة
LI Hedong XU Shilang Christopher K Y Leung
في
Chemistry and Materials Science
,
Materials Science
,
Metallurgy
2009
The tensile and flexural properties of polyvinyl alcohol (PVA) fiber reinforced ultra high toughness cementitious composite (UHTCC) were investigated. The composite, tested at the age of 14 d, 28 d and 56 d, shows extremely remarkable pseudo strain hardening behavior, saturated multiple cracking and ultra high ultimate strain capacity above 4% under uniaxial loading. Also, the corresponding crack widths are controlled under 50 um even at 56 days age. In the third point bending tests on thin plate specimens, the composite shows ultra high flexural ductility and multiple cracking on the tension surface. The high ultimate flexural strength/first tensile strength ratio of about 5 verifies the pseudo strain hardening behavior of UHTCC. SEM observation on fracture surfaces provides indirect evidence of optimal design for the composite.
Journal Article
Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment
بواسطة
Hui, Wei-jun
,
Dong, Han
,
Zhang, Yong-jian
في
Applied and Technical Physics
,
Engineering
,
Machines
2017
The thermal stability of retained austenite(RA)and the mechanical properties of the quenched and intercritical annealed 0.1C-5Mn steel with the starting ultrafine lamellar duplex structure of ferrite and retained austenite during tempering within the range from 200 to 500°C were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM)and tensile testing.The results showed that there was a slight decrease in the RA volume fraction with increasing tempering temperature up to 400°C.This caused a slight increase in the ultimate tensile strength(UTS)and a slight decrease in the total elongation(TE);thus,the product of UTS to TE(UTS×TE)as high as 31GPa·% was obtained and remained nearly unchanged.However,aportion of the RA began to decompose when tempered at 500°C and thus caused a~35% decrease of the RA fraction and a~16%decrease of the value of UTS×TE.It is concluded that the ultrafine lamellar duplex structure is rather stable and the excellent combination of strength and ductility could be retained with tempering temperature up to 400°C.Thus,thermal processes such as galvanization are feasible for the tested steel provided that their temperatures are not higher than 400°C.
Journal Article
Processing, Microstructure and Mechanical Properties of Ti6Al4V Particles-Reinforced Mg Matrix Composites
بواسطة
X. M. Wang X. J. Wang X. S. Hu K. Wu M. Y. Zheng
في
Bonding strength
,
Characterization and Evaluation of Materials
,
Chemistry and Materials Science
2016
Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of the ingots. Furthermore, the optimal speed of the heating and the liquid stirring could overcome particle settlement caused by the density difference between the matrix and the particles. Ti6Al4V particles distributed uniformly in the composites with different particle contents. The average grain size decreased with the increase in the particle contents. The Ti6A14V particles bonded pretty well with the alloy matrix. In addition, there were some interfacial reactions in the composites. There were rod-like A13Ti phases at the interface. The precipitates extended from the particle surface to the matrix, and they might improve the interfacial bonding strength. The ultimate tensile strength, yield strength and elastic modulus were enhanced as the particle contents increased, and the elongation was much better than that of the same matrix material reinforced with SiC particles. Thus, the novel composites exhibit better comprehensive mechanical properties.
Journal Article
Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments
بواسطة
Xiang-Peng Xiao Bai-Qing Xiong Qiang-SongWang Guo-Liang Xie Li-Jun Peng Guo-Xing Huang
في
AGING MECHANISMS
,
Biomaterials
,
Chemistry and Materials Science
2013
The effect of thermomechanical treatments on the microstructures and properties of Cu-2.1Ni-0.5Si- 0.2Zr alloy was investigated. The hot-rolled plates were solution treated at 920 ℃ for 1.5 h, quenched into water, cold rolled by 70 % reduction in thickness, and then aged at 400, 450 and 500 ℃for various times. The variation in tensile strength and electrical conductivity of the alloy was measured as a function of the aging time. The results show the peak strength value of 665 MPa for the alloy aged at 450 ℃ for 2 h. However, the electrical conductivity is observed to reach a maximum of 47 % IACS aged at 450℃for 8 h. OM, SEM, and TEM were used for microstructural inspection of the alloy. Precipitation occurs preferentially at deformation bands in the cold-rolled alloy. Properties behavior is discussed in the light of microstructural features.
Journal Article
High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays
بواسطة
Haoming Wei Yang Wei Yang Wu Liang Liu Shoushan Fan Kaili Jiang
في
Arrays
,
Atomic/Molecular Structure and Spectra
,
Biomedicine
2013
Spinning carbon nanotube (CNT) yarns from super-aligned carbon nanotube (SACNT) arrays is a promising approach to fabricate high-strength fibers. However the reported tensile strengths of the as-prepared fibers are far below that of an individual CNT. It is therefore still a challenge to improve their mechanical strengths. Here we report that the tensile strengths and Young's moduli can be further improved to 2.2 GPa and 200 GPa respectively, if we first treat the SACNT array with oxygen plasma by using a reactive ion etching (RIE) facility, then dry spin yarns from it and make composite fibers with polyvinyl alcohol. According to the experimental results obtained using scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), the improvement is attributed to the oxygen RIE process, as it can create functional groups on the outer walls of CNTs and thus improve the interaction between the CNTs and the polymer molecules.
Journal Article
Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel
بواسطة
R Paventhan P R Lakshminarayanan V Balasubramanian
في
304奥氏体不锈钢
,
Applied and Technical Physics
,
Austenitic stainless steels
2012
Friction welding is a solid state joining process used extensively currently owing to its advantages such as low heat input, high production efficiency, ease of manufacture, and environment friendliness. Materials difficult to be welded by fusion welding processes can be successfully welded by friction welding. An attempt was made to develop an empirical relationship to predict the tensile strength of friction welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel, incorporating the process parameters such as friction pressure, forging pressure, friction time and forging time, which have great influence on strength of the joints. Response surface methodology was applied to optimize the friction welding process parameters to attain maximum tensile strength of the joint. The maximum tensile strength of 543 MPa could be obtained for the joints fabricated under the welding conditions of friction pressure of 90 MPa, forging pressure of 90 MPa, friction time of 6 s and forging time of 6 s.
Journal Article
Effect of the amount of lignin on tensile properties of single wood fibers
بواسطة
Cheng, Hai-Tao
,
Zhang, Shuang-Yan
,
Fei, Ben-Hua
في
Elongation
,
Fibers
,
Mechanical properties
2013
Chemical components are the main factors affecting the mechanical properties of wood fibers. Lignin is one of the main components of wood cell walls and has a critical effect on the mechanical properties of paper pulp and wood fiber based composites. In this study, we carried out tensile tests on single mature latewood tracheids of Chinese fir (Cunninghamia lanciotata (Lamb.) Hook.), using three different delignified treatment methods to obtain different amounts of lignin. We applied single fiber tests to study the effect of the amount of lignin on mechanical tensile properties of single wood fibers at the cellular level. The results show that in their dry state, the modulus of elasticity of single fibers decreased with the reduction in the amount of lignin; even their absolute values were not high. The amount of lignin affects the tensile strength and elongation of single fibers considerably. Tensile strength and elongation of single fibers increase with a reduction in the amount of lignin.
Journal Article
Fracture Morphologies of Advanced High Strength Steel During Deformation
بواسطة
Y. Sun X. Li X. Yu D. Ge J. Chen J. Chert
في
Burnishing
,
Characterization and Evaluation of Materials
,
Chemistry and Materials Science
2014
The fracture morphologies of several advanced high-strength steels (DP590, DP780, DP980, Ml180, and M1300) formed in uniaxial tension and piercing were observed by scanning electron microscope, and then quantitatively analyzed by image processing technique. The tension-induced fractographs are dominated by obvious uniform or bimodal size dimples, while shearing-induced fractographs have smooth surfaces and few dimples. The fracture zone of higher grade DP steels is smoother. As for M1180 and M1300, the fracture zones consist of very small dimples and smooth brittle surfaces. The dimple size of M1300( ,- 1.2 tm) is smaller than that of M1180( 1.6 tm). Moreover, in the tensile fracture, the quantitative correlation between average dimple diameter (d) and tensile strength (a) can be represented by d = 10,502.32a-121. However, the relation between dimple density and tensile strength is not monotonic due to the appearance of bimodal size dimples with increase of tensile strength. For shearing-induced fracture during piercing, the fitted empirical model between the percentage of burnish zone (f) and tensile strength can be described asf --- 239.9a-'36.
Journal Article
Mechanical Properties and Microstructure of X120 Grade High Strength Pipeline Steel
بواسطة
ZHANG Ji-ming SUN Wei-hua SUN Hao
في
Applied and Technical Physics
,
Engineering
,
Iron and steel industry
2010
A new ultrahigh strength pipeline steel with high yield strength and high impact toughness was fabricated in this work, and mechanical properties and microstructure of the steel were investigated. The steel exhibited out- standing mechanical properties with yield strength levels of up to 951 MPa and tensile strength levels up to 1023 MPa. The sharp notch toughness with absorbed energy values of 227 J/cm2 at -30℃ and shear area of up to 95% in drop weight tear test (DWTT) at temperature of --20℃ were achieved. It was found that microstructure of the steel com- prises a majority of low-carbon lath bainite with different sublaths and sub-sublaths, meanwhile there is a high density of dislocation between laths and the dispersed film-like martensite-austenite (M-A) constituents. Most of the precipi- tates in this steel are duplex type containing Nb and Ti with characterized morphology of cap with the range of precipitation size from a few to tens nanometers.
Journal Article
Influence of Multi-pass Friction Stir Processing on Microstructure and Mechanical Properties of Die Cast AI-7Si-3Cu Aluminum Alloy
2016
The influence of overlap multi-pass friction stir processing on the microstructure and the mechanical properties, in particular, strength, ductility and hardness of die cast A1-7Si-3Cu aluminum alloy was investigated. It was observed that increase in the number of overlap passes friction stir processing resulted in significant refinement and redistribution of aluminum silicon eutectic phase and elimination of casting porosities. The microstructural refinement by the friction stir processing not only increases the ultimate tensile strength from 121 to 273 MPa, but also increases the ductility as observed by the increase in fracture strain from 1.8% to 10%. Analysis of the fractured surface reveals that the microstructural refinement obtained by friction stir processing plays a vital role in transforming the fracture mode from completely mixed mode to the ductile mode of the fracture with increasing number of passes. The change in the size, shape, morphology and distribution of eutectic silicon particles and elimination of the porosities are the main reasons for the increases in tensile strength and ductility due to friction stir processing.
Journal Article