نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
737 نتائج ل "Carcinoembryonic Antigen - chemistry"
صنف حسب:
Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry
Coronaviruses recognize a variety of receptors using different domains of their envelope-anchored spike protein. How these diverse receptor recognition patterns affect viral entry is unknown. Mouse hepatitis coronavirus (MHV) is the only known coronavirus that uses the N-terminal domain (NTD) of its spike to recognize a protein receptor, CEACAM1a. Here we determined the cryo-EM structure of MHV spike complexed with mouse CEACAM1a. The trimeric spike contains three receptor-binding S1 heads sitting on top of a trimeric membrane-fusion S2 stalk. Three receptor molecules bind to the sides of the spike trimer, where three NTDs are located. Receptor binding induces structural changes in the spike, weakening the interactions between S1 and S2. Using protease sensitivity and negative-stain EM analyses, we further showed that after protease treatment of the spike, receptor binding facilitated the dissociation of S1 from S2, allowing S2 to transition from pre-fusion to post-fusion conformation. Together these results reveal a new role of receptor binding in MHV entry: in addition to its well-characterized role in viral attachment to host cells, receptor binding also induces the conformational change of the spike and hence the fusion of viral and host membranes. Our study provides new mechanistic insight into coronavirus entry and highlights the diverse entry mechanisms used by different viruses.
Image-Guided Surgery in Patients with Pancreatic Cancer: First Results of a Clinical Trial Using SGM-101, a Novel Carcinoembryonic Antigen-Targeting, Near-Infrared Fluorescent Agent
BackgroundNear-infrared (NIR) fluorescence is a promising novel imaging technique that can aid in intraoperative demarcation of pancreatic cancer (PDAC) and thus increase radical resection rates. This study investigated SGM-101, a novel, fluorescent-labeled anti-carcinoembryonic antigen (CEA) antibody. The phase 1 study aimed to assess the tolerability and feasibility of intraoperative fluorescence tumor imaging using SGM-101 in patients undergoing a surgical exploration for PDAC.MethodsAt least 48 h before undergoing surgery for PDAC, 12 patients were injected intravenously with 5, 7.5, or 10 mg of SGM-101. Tolerability assessments were performed at regular intervals after dosing. The surgical field was imaged using the Quest NIR imaging system. Concordance between fluorescence and tumor presence on histopathology was studied.ResultsIn this study, SGM-101 specifically accumulated in CEA-expressing primary tumors and peritoneal and liver metastases, allowing real-time intraoperative fluorescence imaging. The mean tumor-to-background ratio (TBR) was 1.6 for primary tumors and 1.7 for metastatic lesions. One false-positive lesion was detected (CEA-expressing intraductal papillary mucinous neoplasm). False-negativity was seen twice as a consequence of overlying blood or tissue that blocked the fluorescent signal.ConclusionThe use of a fluorescent-labeled anti-CEA antibody was safe and feasible for the intraoperative detection of both primary PDAC and metastases. These results warrant further research to determine the impact of this technique on clinical decision making and overall survival.
Gold Nanoparticles-Based Colorimetric Immunoassay of Carcinoembryonic Antigen with Metal–Organic Framework to Load Quinones for Catalytic Oxidation of Cysteine
This work reported gold nanoparticles (AuNPs)-based colorimetric immunoassay with the Cu-based metal–organic framework (MOF) to load pyrroloquinoline quinone (PQQ) for the catalytic oxidation of cysteine. In this method, both Cu2+ and PQQ in the MOF could promote the oxidation of inducer cysteine by redox cycling, thus limiting the cysteine-induced aggregation of AuNPs and achieving dual signal amplification. Specifically, the recombinant carcinoembryonic antigen (CEA) targets were anchored on the MOF through the metal coordination interactions between the hexahistidine (His6) tag in CEA and the unsaturated Cu2+ sites in MOF. The CEA/PQQ-loaded MOF could be captured by the antibody-coated ELISA plate to catalyze the oxidation of cysteine. However, once the target CEA in the samples bound to the antibody immobilized on the plate surface, the attachment of CEA/PQQ-loaded MOF would be limited. Cysteine remaining in the solution would trigger the aggregation of AuNPs and cause a color change from red to blue. The target concentration was positively related to the aggregation and color change of AuNPs. The signal-on competitive plasmonic immunoassay exhibited a low detection limit with a linear range of 0.01–1 ng/mL. Note that most of the proteins in commercial ELISA kits are recombinant with a His6 tag in the N- or C-terminal, so the work could provide a sensitive plasmonic platform for the detection of biomarkers.
Structural insights into epitope-paratope interactions of a monoclonal antibody targeting CEACAM5-expressing tumors
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are overexpressed in some tumor types. The antibody-drug conjugate tusamitamab ravtansine specifically recognizes the A3-B3 domains of human CEACAM5 (hCEACAM5). To understand this specificity, here we map the epitope-paratope interface between the A3-B3 domains of hCEACAM5 (hCEACAM5 A3-B3 ) and the antigen-binding fragment of tusamitamab (tusa Fab). We use hydrogen/deuterium exchange mass spectrometry to identify the tusa Fab paratope, which involves heavy chain (HC) residues 101–109 and light chain residues 48–54 and 88–104. Using surface plasmon resonance, we demonstrate that alanine variants of HC residues 96–108 abolish binding to hCEACAM5, suggesting that these residues are critical for tusa-Fab–antigen complex formation. The cryogenic electron microscopy structure of the hCEACAM5 A3-B3 - tusa Fab complex (3.11 Å overall resolution) reveals a discontinuous epitope involving residues in the A3-B3 domains and an N-linked mannose at residue Asn612. Conformational constraints on the epitope-paratope interface enable tusamitamab to target hCEACAM5 A3-B3 and distinguish CEACAM5 from other CEACAMs. Cryo-electron microscopy was used to determine the high-resolution structure of the antigen-binding fragment of tusamitamab bound to the A3-B3 domains of CEACAM5. The conformational constraints discovered in this study may inform the rational design of new CEACAM5-targeting therapies.
Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring
This paper describes the development of a graphene-based dry flexible electrocardiography (ECG) electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET) substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM), and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR) ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults.
Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor
Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same β-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the β-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.
A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites
A sandwich-type electrochemical aptasensor is described for detecting the carcinoembryonic antigen (CEA) with high sensitivity and accuracy. Two kinds of nanomaterials are used. The first was obtained by modifying gold nanoparticles with reduced graphene oxide and hemin (Hemin-rGO-AuNPs). The second consists of horseradish peroxidase-modified organic-inorganic hybrid nanoflowers linked to gold nanoparticles to obtain an architecture of type HRP-Cu 3 (PO 4 ) 2 -HNF-AuNPs). These serve as carriers for two aptamers (apt1 and apt2) against CEA. Simultaneously, they were used to catalyze the precipitation reaction between 4-chloro-1-naphthol(4-CN) and H 2 O 2 . A sandwich-type assay linked to enzyme inhibition amplification was established for electrochemical determination of CEA. Under optimal experimental conditions and by using differential pulse voltammetry, the response peak currents (best measured at −0.34 V vs. Ag/AgCl) increases linearly with the logarithm of the CEA concentration in the range between 100 fg mL −1 and 100 ng mL −1 . The detection limit is as low as 29 fg mL −1 . Graphical abstract Schematic representation of the sandwich-type electrochemical aptasensor based on signal inhibition amplification from biocatalytic precipitation reaction. (HRP-Cu 3 (PO 4 ) 2 hybrid nanoflowers: Horseradish Peroxidase-Cu 3 (PO 4 ) 2 hybrid nanoflowers; AuNPs: Gold Nanoparticles; Hemin-rGO-AuNPs: Hemin-Reduced Graphene Oxide-Gold Nanoparticles; BSA: Bovine Serum Albumin; CEA: Carcinoembryonic Antigen; CEA apt1 : 5′-SH-(CH 2 ) 6 -ATA CCA GCT TAT TCA ATT-3′; CEA apt2 : 5′-NH 2 -(CH 2 ) 6 -AGG GGG TGA AGG GAT ACC C-3′; GCE: Glassy carbon electrode; 4-CN: 4-Chloro-1-naphthol; DPV: Differential pulse voltammetry).
Ratiometric persistent luminescence aptasensors for carcinoembryonic antigen detection
NIR-emitted ZnGa 2 O 4 :Cr 3+ persistent luminescence nanoparticles (ZGC NPs) coated with polydopamine (ZGC@PDA NPs) were designed featuring internal reference and quenching ability. Sr-doped Zn 2 GeO 4 persistent luminescence nanorods (ZGO:Sr NRs) served as detection probes, which exhibited blue emission. The decay times and intensity of luminescence of ZGO:Sr NRs were optimized to acquire desired luminescence properties. An aptamer-guided ratiometric persistent luminescence sensor with the LOD (0.46 pg mL −1 ) was established to detect carcinoembryonic antigen (CEA). This developed ratiometric aptasensor based on persistent luminescence nanomaterials (PLMs) does not only use the afterglow properties of nanomaterials to avoid the interference of autofluorescence but also precludes the interference of certain factors in the detection environment on the luminescence intensity due to the introduction of a reference signal, and is suitable for early screening of tumor markers in serum samples. Moreover, the optimization of luminescence properties, especially for luminescence decay times, provides a way for the fabrication of multiple persistent luminescence materials in the application of time-resolved fluorescence technology. Graphical abstract Construction of ZGO:Sr NR- and ZGC@PDA NP-driven ratiometric aptasensor for CEA detection.
Intracellular delivery of therapeutic antibodies into specific cells using antibody-peptide fusions
Because of their favorable properties as macromolecular drugs, antibodies are a very successful therapeutic modality for interfering with disease-relevant targets in the extracellular space or at the cell membrane. However, a large number of diseases involve cytosolic targets and designing antibodies able to efficiently reach intracellular compartments would expand the antibody-tractable conditions. Here, we genetically fused cell penetrating peptides (CPPs) at various positions to an antibody targeting cancer cells, evaluated the developability features of the resulting antibody-peptide fusions and the ability of selected constructs to reach the cytosol. We first determined positions in the IgG structure that were permissive to CPP incorporation without destabilizing the antibody. Fusing CPPs to the C-terminus of the light chain and either before or after the hinge had the least effect on antibody developability features. These constructs were further evaluated for cell penetration efficiency. Two out of five tested CPPs significantly enhanced antibody penetration into the cytosol, in particular when fused before or after the hinge. Finally, we demonstrate that specific antibody binding to the cell surface target is necessary for efficient cell penetration of the CPP-antibody fusions. This study provides a solid basis for further exploration of therapeutic antibodies for intracellular targets.
Recent expansion and adaptive evolution of the carcinoembryonic antigen family in bats of the Yangochiroptera subgroup
Background Expansions of gene families are predictive for ongoing genetic adaptation to environmental cues. We describe such an expansion of the carcinoembryonic antigen ( CEA ) gene family in certain bat families. Members of the CEA family in humans and mice are exploited as cellular receptors by a number of pathogens, possibly due to their function in immunity and reproduction. The CEA family is composed of CEA-related cell adhesion molecules (CEACAMs) and secreted pregnancy-specific glycoproteins (PSGs). PSGs are almost exclusively expressed by trophoblast cells at the maternal-fetal interface. The reason why PSGs exist only in a minority of mammals is still unknown. Results Analysis of the CEA gene family in bats revealed that in certain bat families, belonging to the subgroup Yangochiroptera but not the Yinpterochiroptera subgroup an expansion of the CEA gene family took place, resulting in approximately one hundred CEA family genes in some species of the Vespertilionidae. The majority of these genes encode secreted PSG-like proteins (further referred to as PSG). Remarkably, we found strong evidence that the ligand-binding domain (IgV-like domain) of PSG is under diversifying positive selection indicating that bat PSGs may interact with structurally highly variable ligands. Such ligands might represent bacterial or viral pathogen adhesins. We have identified two distinct clusters of PSGs in three Myotis species. The two PSG cluster differ in the amino acids under positive selection. One cluster was only expanded in members of the Vespertilionidae while the other was found to be expanded in addition in members of the Miniopteridae and Mormoopidae. Thus one round of PSG expansion may have occurred in an ancestry of all three families and a second only in Vespertilionidae. Although maternal ligands of PSGs may exist selective challenges by two distinct pathogens seem to be likely responsible for the expansion of PSGs in Vespertilionidae. Conclusions The rapid expansion of PSGs in certain bat species together with selection for diversification suggest that bat PSGs could be part of a pathogen defense system by serving as decoy receptors and/or regulators of feto-maternal interactions.