نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
123 نتائج ل "Dermis - blood supply"
صنف حسب:
Transdermal deferoxamine prevents pressure-induced diabetic ulcers
Significance Diabetes is the leading cause of nontraumatic amputations. There are no effective therapies to prevent diabetic ulcer formation and only modestly effective technologies to help with their healing. To enhance diabetic wound healing we designed a transdermal delivery system containing the FDA-approved small molecule deferoxamine, an iron chelator that increases defective hypoxia inducible factor-1 alpha transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. This system overcomes the challenge of delivering hydrophilic molecules through the normally impermeable stratum corneum and both prevents diabetic ulcer formation and improves the healing of existing diabetic wounds. This represents a prophylactic pharmacological agent to prevent ulcer formation that is rapidly translatable into the clinic and has the potential to ultimately transform the care and prevention of diabetic complications. There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.
Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure
Cell-based therapies have recently been the focus of much research to enhance skin wound healing. An important challenge will be to develop vehicles for cell delivery that promote survival and uniform distribution of cells across the wound bed. These systems should be stiff enough to facilitate handling, whilst soft enough to limit damage to newly synthesized wound tissue and minimize patient discomfort. Herein, we developed several novel modifiable nanofibre scaffolds comprised of Poly (ε-caprolactone) (PCL) and gelatin (GE). We asked whether they could be used as a functional receptacle for adult human Skin-derived Precursor Cells (hSKPs) and how naked scaffolds impact endogenous skin wound healing. PCL and GE were electrospun in a single facile solvent to create composite scaffolds and displayed unique morphological and mechanical properties. After seeding with adult hSKPs, deposition of extracellular matrix proteins and sulphated glycosaminoglycans was found to be enhanced in composite grafts. Moreover, composite scaffolds exhibited significantly higher cell proliferation, greater cell spreading and integration within the nanofiber mats. Transplantation of acellular scaffolds into wounds revealed scaffolds exhibited improvement in dermal-epidermal thickness, axonal density and collagen deposition. These results demonstrate that PCL-based nanofiber scaffolds show promise as a cell delivery system for wound healing.
A Three-Dimensional Atlas of Human Dermal Leukocytes, Lymphatics, and Blood Vessels
Dendritic cells (DCs), macrophages (Mφ), and T cells are major components of the skin immune system, but their interstitial spatial organization is poorly characterized. Using four-channel whole-mount immunofluorescence staining of the human dermis, we demonstrated the three-dimensional distribution of CD31+ blood capillaries, LYVE-1+ lymphatics, discrete populations of CD11c+ myeloid DCs, FXIIIa+ Mφ, and lymphocytes. We showed phenotypic and morphological differences in situ between DCs and Mφ. DCs formed the first dermal cellular layer (0–20 μm beneath the dermoepidermal junction), Mφ were located deeper (40–60 μm), and CD3+ lymphocytes were observed throughout (0–60 μm). Below this level, DCs, T cells, and the majority of Mφ formed stable perivascular sheaths. Whole-mount imaging revealed the true extent of dermal leukocytes previously underestimated from cross-section views. The total area of apical dermis (0–30 μm) contained approximately 10-fold more myeloid DCs than the entire blood volume of an average individual. Surprisingly, <1% of dermal DCs occupied lymphatics in freshly isolated skin. Dermal DCs rapidly accumulated within lymphatics, but Mφ remained fixed in skin explants cultured ex vivo. The leukocyte architecture observed in normal skin was distorted in inflammation and disease. These studies illustrate the micro-anatomy of dermal leukocytes and provide further insights into their functional organization.
The Skin Immune Atlas: Three-Dimensional Analysis of Cutaneous Leukocyte Subsets by Multiphoton Microscopy
Site-specific differences in skin response to pathogens and in the course of cutaneous inflammatory diseases are well appreciated. The composition and localization of cutaneous leukocytes has been studied extensively using histology and flow cytometry. However, the precise three-dimensional (3D) distribution of distinct immune cell subsets within skin at different body sites requires visualization of intact living skin. We used intravital multiphoton microscopy in transgenic reporter mice in combination with quantitative flow cytometry to generate a 3D immune cell atlas of mouse skin. The 3D location of innate and adaptive immune cells and site-specific differences in the densities of macrophages, T cells, and mast cells at four defined sites (ear, back, footpad, and tail) is presented. The combinatorial approach further demonstrates an as yet unreported age-dependent expansion of dermal gamma-delta T cells. Localization of dermal immune cells relative to anatomical structures was also determined. Although dendritic cells were dispersed homogeneously within the dermis, mast cells preferentially localized to the perivascular space. Finally, we show the functional relevance of site-specific mast cell disparities using the passive cutaneous anaphylaxis model. These approaches are applicable to assessing immune cell variations and potential functional consequences in the setting of infection, as well as the pathogenesis of inflammatory skin conditions.
Characterization of microvessels in the human forehead dermis using intravascular dual perfusion and immunofluorescence staining
Skin microcirculation provides essential insights in clinical practice. However, the specific characteristics and distribution patterns of dermal microarterioles and microvenules remain insufficiently explored. This study aimed to analyze their structural differences and distribution in the human forehead skin using an innovative intravascular dual perfusion technique combined with immunofluorescence staining to distinguish microvessel types within the dermis. Using two post-mortem cadaver specimens, lead oxide-gelatin perfusion was applied to label microarterioles, and latex was used for microvenules. Tissue sections underwent hematoxylin and eosin and immunofluorescence staining, with cluster of differentiation 31 (CD31) serving as a general vascular marker and monocarboxylate transporter 1 (MCT1) as a venule-specific marker. The analysis revealed significant structural differences between dermal layers: vessels in the deep dermis had larger diameters and thicker walls than those in the superficial layer, while microvessel density was higher in the superficial dermis. These findings demonstrate distinct patterns and significant differences in microvessel distribution between the superficial and deep dermal layers, reflecting their layer-specific functional demands. Furthermore, MCT1 was identified as a specific marker for microvenules, and a novel method combining CD31 and MCT1 immunofluorescent staining was introduced to differentiate dermal microarterioles from microvenules. These results offer valuable implications for surgical planning, skin grafting, and diagnostics related to microcirculation.
A comparative analysis of deferoxamine treatment modalities for dermal radiation‐induced fibrosis
The iron chelator, deferoxamine (DFO), has been shown to potentially improve dermal radiation‐induced fibrosis (RIF) in mice through increased angiogenesis and reduced oxidative damage. This preclinical study evaluated the efficacy of two DFO administration modalities, transdermal delivery and direct injection, as well as temporal treatment strategies in relation to radiation therapy to address collateral soft tissue fibrosis. The dorsum of CD‐1 nude mice received 30 Gy radiation, and DFO (3 mg) was administered daily via patch or injection. Treatment regimens were prophylactic, during acute recovery, post‐recovery, or continuously throughout the experiment (n = 5 per condition). Measures included ROS‐detection, histology, biomechanics and vascularity changes. Compared with irradiated control skin, DFO treatment decreased oxidative damage, dermal thickness and collagen content, and increased skin elasticity and vascularity. Metrics of improvement in irradiated skin were most pronounced with continuous transdermal delivery of DFO. In summary, DFO administration reduces dermal fibrosis induced by radiation. Although both treatment modalities were efficacious, the transdermal delivery showed greater effect than injection for each temporal treatment strategy. Interestingly, the continuous patch group was more similar to normal skin than to irradiated control skin by most measures, highlighting a promising approach to address detrimental collateral soft tissue injury following radiation therapy.
Characterization of dermal skin innervation in fibromyalgia syndrome
We characterized dermal innervation in patients with fibromyalgia syndrome (FMS) as potential contribution to small fiber pathology. Skin biopsies of the calf were collected (86 FMS patients, 35 healthy controls). Skin was immunoreacted with antibodies against protein gene product 9.5, calcitonine gene-related peptide, substance P, CD31, and neurofilament 200 for small fiber subtypes. We assessed two skin sections per patient; on each skin section, two dermal areas (150 x 700 μm each) were investigated for dermal nerve fiber length (DNFL). In FMS patients we found reduced DNFL of fibers with vessel contact compared to healthy controls (p<0.05). There were no differences for the other nerve fiber subtypes. We found less dermal nerve fibers in contact with blood vessels in FMS patients than in controls. The pathophysiological relevance of this finding is unclear, but we suggest the possibility of a relationship with impaired thermal tolerance commonly reported by FMS patients.
Correlations between nailfold microangiopathy severity, finger dermal thickness and fingertip blood perfusion in systemic sclerosis patients
Objective The aim of this study was to identify possible correlations between nailfold microangiopathy severity, finger dermal thickness (DT) and fingertip blood perfusion (FBP) in systemic sclerosis (SSc) patients. Methods Fifty-seven SSc patients and 37 healthy subjects were enrolled. All patients were evaluated by nailfold videocapillaroscopy (NVC) to classify and score the severity of microangiopathy. Both modified Rodnan skin score (mRss) and skin high-frequency ultrasound were used to detect finger DT. Laser Doppler flowmetry (LDF) was employed to detect FBP. Results A positive correlation was found between nailfold microvascular damage severity and both ultrasound-DT (p=0.028) and mRss values (p<0.0001). In particular, both ultrasound-DT and mRss were found progressively higher in patients with ‘Early’, ‘Active’ or ‘Late’ NVC pattern of microangiopathy. A negative correlation was observed between nailfold microvascular damage severity and FBP (p<0.0001), showing the lowest FBP of the patients with more advanced NVC patterns. A negative correlation was observed between FBP, and both ultrasound-DT (p=0.007) and mRss values (p=0.0002). SSc patients showed a higher ultrasound-DT at the level of the fingers, as well as a lower FBP than healthy subjects (p<0.0001). Conclusions This study demonstrates a relationship between nailfold microangiopathy severity, DT and FBP in SSc patients.
Transient receptor potential ankyrin 1 (TRPA1) positively regulates imiquimod‐induced, psoriasiform dermal inflammation in mice
Transient receptor potential ankyrin 1 (TRPA1), a membrane protein ion channel, is known to mediate itch and pain in skin. The function of TRPA1, however, in psoriasiform dermatitis (PsD) is uncertain. Herein, we found that expression of TRPA1 is highly up‐regulated in human psoriatic lesional skin. To study the role of TRPA1 in PsD, we assessed Psoriasis Severity Index (PSI) scores, transepidermal water loss (TEWL), skin thickness and pathology, and examined dermal inflammatory infiltrates, Th17‐related genes and itch‐related genes in c57BL/6 as wild‐type (WT) and TRPA1 gene knockout (KO) mice following daily application of topical IMQ cream for 5 days. Compared with WT mice, clinical scores, skin thickness change and TEWL scores were similar on day 3, but were significantly decreased on day 5 in IMQ‐treated TRPA1 KO mice (vs WT mice), suggesting reduced inflammation and skin barrier defects. Additionally, the relative area of epidermal Munro's microabscesses and mRNA levels of neutrophil inducible chemokines (S100A8, S100A9 and CXCL1) were decreased in the treated skin of TRPA1 KO mice, suggesting that neutrophil recruitment was impaired in the KO mice. Furthermore, mast cells, CD31+ blood vascular cells, CD45+ leukocytes and CD3+ T cells were all reduced in the treated skin of TRPA1 KO mice. Lastly, mRNA expression levels of IL‐1β, IL‐6, IL‐23, IL‐17A, IL‐17F and IL‐22 were decreased in TRPA1 KO mice. In summary, these results suggest a key role for TRPA1 in psoriasiform inflammation and raising its potential as a target for therapeutic intervention.
Intravital Immunofluorescence for Visualizing the Microcirculatory and Immune Microenvironments in the Mouse Ear Dermis
Visualizing the dynamic behaviors of immune cells in living tissue has dramatically increased our understanding of how cells interact with their surroundings, contributing important insights into mechanisms of leukocyte trafficking, tumor cell invasion, and T cell education by dendritic cells, among others. Despite substantial advances with various intravital imaging techniques including two-photon microscopy and the generation of multitudes of reporter mice, there is a growing need to assess cell interactions in the context of specific extracellular matrix composition and microvascular functions, and as well, simpler and more widely accessible methods are needed to image cell behaviors in the context of living tissue physiology. Here we present an antibody-based method for intravital imaging of cell interactions with the blood, lymphatic, and the extracellular matrix compartments of the living dermis while simultaneously assessing capillary permeability and lymphatic drainage function. Using the exposed dorsal ear of the anesthetized mouse and a fluorescence stereomicroscope, such events can be imaged in the context of specific extracellular matrix proteins, or matrix-bound chemokine stores. We developed and optimized the method to minimize tissue damage to the ear, rapidly immunostain for multiple extracellular or cell surface receptors of interest, minimize immunotoxicity with pre-blocking Fcγ receptors and phototoxicity with extracellular antioxidants, and highlight the major dermal tissue structures with basement membrane markers. We demonstrate differential migration behaviors of bone marrow-derived dendritic cells, blood-circulating leukocytes, and dermal dendritic cells, with the latter entering sparse CCL21-positive areas of pre-collecting lymphatic vessels. This new method allows simultaneous imaging of cells and tissue structures, microvascular function, and extracellular microenvironment in multiple skin locations for 12 hours or more, with the flexibility of immunolabeling in addition to genetic-based fluorescent reporters.