نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • السلسلة
      السلسلة
      امسح الكل
      السلسلة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع المحتوى
    • نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • بلد النشر
    • الناشر
    • المصدر
    • الجمهور المستهدف
    • المتبرع
    • اللغة
    • مكان النشر
    • المؤلفين
    • موقع
727,422 نتائج ل "Functions"
صنف حسب:
Matrix Functions of Bounded Type: An Interplay Between Function Theory and Operator Theory
In this paper, we study matrix functions of bounded type from the viewpoint of describing an interplay between function theory and operator theory. We first establish a criterion on the coprime-ness of two singular inner functions and obtain several properties of the Douglas-Shapiro-Shields factorizations of matrix functions of bounded type. We propose a new notion of tensored-scalar singularity, and then answer questions on Hankel operators with matrix-valued bounded type symbols. We also examine an interpolation problem related to a certain functional equation on matrix functions of bounded type; this can be seen as an extension of the classical Hermite-Fejér Interpolation Problem for matrix rational functions. We then extend the
Calculus : early transcendentals
'Calculus' covers exponential and logarithmic functions. It looks at their limits, derivatives, polynomials and other elementary functions.
Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations
In this paper we present a comprehensive treatment of function spaces with logarithmic smoothness (Besov, Sobolev, Triebel-Lizorkin). We establish the following results: The key tools behind our results are limiting interpolation techniques and new characterizations of Besov and Sobolev norms in terms of the behavior of the Fourier transforms for functions such that their Fourier transforms are of monotone type or lacunary series.
Hardy–Littlewood and Ulyanov inequalities
We give the full solution of the following problem: obtain sharp inequalities between the moduli of smoothness The main tool is the new Hardy–Littlewood–Nikol’skii inequalities. More precisely, we obtained the asymptotic behavior of the quantity We also prove the Ulyanov and Kolyada-type inequalities in the Hardy spaces. Finally, we apply the obtained estimates to derive new embedding theorems for the Lipschitz and Besov spaces.
Embeddings of Decomposition Spaces
Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) In a nutshell, in order to apply the embedding results presented in this article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings. These sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of We also prove a The resulting embedding theory is illustrated by applications to