نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • السلسلة
      السلسلة
      امسح الكل
      السلسلة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع المحتوى
    • نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • بلد النشر
    • الناشر
    • المصدر
    • الجمهور المستهدف
    • المتبرع
    • اللغة
    • مكان النشر
    • المؤلفين
    • موقع
456,005 نتائج ل "Mice"
صنف حسب:
Your neighbor the mouse
Introduces readers to mice, their physical characteristics and behavior, adaptation to urban environments and ability to exist alongside humans.
Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci
We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene ( Efcab3-like ) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development. Sequence assemblies for the genomes of 16 widely used inbred laboratory mouse strains highlight considerable strain-specific haplotype variation and allow for the identification of regions with the greatest sequence diversity between strains.
Highly localized intracellular Ca.sup.2+ signals promote optimal salivary gland fluid secretion
Salivary fluid secretion involves an intricate choreography of membrane transporters to result in the trans-epithelial movement of NaCl and water into the acinus lumen. Current models are largely based on experimental observations in enzymatically isolated cells where the Ca.sup.2+ signal invariably propagates globally and thus appears ideally suited to activate spatially separated Cl and K channels, present on the apical and basolateral plasma membrane, respectively. We monitored Ca.sup.2+ signals and salivary secretion in live mice expressing GCamp6F, following stimulation of the nerves innervating the submandibular gland. Consistent with in vitro studies, Ca.sup.2+ signals were initiated in the apical endoplasmic reticulum. In marked contrast to in vitro data, highly localized trains of Ca.sup.2+ transients that failed to fully propagate from the apical region were observed. Following stimuli optimum for secretion, large apical-basal gradients were elicited. A new mathematical model, incorporating these data was constructed to probe how salivary secretion can be optimally stimulated by apical Ca.sup.2+ signals.
Mice
\"This easy-to-read nonfiction story tells a \"night in the life\" of a mouse, from waking up, finding food and feeding babies, to going back to sleep when the sun comes up\"-- Provided by publisher.
LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury
Sensing and clearance of dysfunctional lysosomes is critical for cellular homeostasis. Here we show that transcription factor EB (TFEB)—a master transcriptional regulator of lysosomal biogenesis and autophagy—is activated during the lysosomal damage response, and its activation is dependent on the function of the ATG conjugation system, which mediates LC3 lipidation. In addition, lysosomal damage triggers LC3 recruitment on lysosomes, where lipidated LC3 interacts with the lysosomal calcium channel TRPML1, facilitating calcium efflux essential for TFEB activation. Furthermore, we demonstrate the presence and importance of this TFEB activation mechanism in kidneys in a mouse model of oxalate nephropathy accompanying lysosomal damage. A proximal tubule-specific TFEB-knockout mouse exhibited progression of kidney injury induced by oxalate crystals. Together, our results reveal unexpected mechanisms of TFEB activation by LC3 lipidation and their physiological relevance during the lysosomal damage response.Nakamura et al. find that the master transcriptional regulator of lysosomal biogenesis and autophagy TFEB is activated following LC3 lipidation during lysosomal damage and show the importance of this mechanism during kidney injury.
Mice
\"An introduction to the life cycle of mice, including how pinkies develop, their plant-based diet, threats from predators, and the woodsy habitats of these backyard animals\"-- Provided by publisher.
Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis
In Parkinson’s disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD. It is unclear if neuromelanin plays a role in Parkinson’s disease pathogenesis since common laboratory animals lack this pigment. Authors show here that overexpression of human tyrosinase in the substantia nigra of rats resulted in an age-dependent production of human-like neuromelanin within nigral dopaminergic neurons and is associated with a Parkinson’s disease phenotype when allowed to accumulate above a specific threshold.
The greentail mouse
The mice become so involved in their Mardi Gras masquerade they forget it is all in fun.
Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression
The gut microbiota has been causally linked to cancer, yet how intestinal microbes influence progression of extramucosal tumors is poorly understood. Here we provide evidence implying that Prevotella heparinolytica promotes the differentiation of Th17 cells colonizing the gut and migrating to the bone marrow (BM) of transgenic Vk*MYC mice, where they favor progression of multiple myeloma (MM). Lack of IL-17 in Vk*MYC mice, or disturbance of their microbiome delayed MM appearance. Similarly, in smoldering MM patients, higher levels of BM IL-17 predicted faster disease progression. IL-17 induced STAT3 phosphorylation in murine plasma cells, and activated eosinophils. Treatment of Vk*MYC mice with antibodies blocking IL-17, IL-17RA, and IL-5 reduced BM accumulation of Th17 cells and eosinophils and delayed disease progression. Thus, in Vk*MYC mice, commensal bacteria appear to unleash a paracrine signaling network between adaptive and innate immunity that accelerates progression to MM, and can be targeted by already available therapies. The mechanisms through which gut microbiota affect extramucosal tumors are poorly understood. Here the authors show that the gut microbiota promotes multiple myeloma by inducing differentiation and migration of Th17 cells in the bone marrow resulting also in increased recruitment of pro-tumorigenic eosinophils.