Catalogue Search | MBRL
نتائج البحث
MBRLSearchResults
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
-
الضبطالضبط
-
مُحَكَّمةمُحَكَّمة
-
نوع العنصرنوع العنصر
-
الموضوعالموضوع
-
السنةمن:-إلى:
-
المزيد من المرشحاتالمزيد من المرشحاتالمصدراللغة
منجز
مرشحات
إعادة تعيين
1,350
نتائج ل
"Olfactory Receptor Neurons - physiology"
صنف حسب:
Antagonistic odor interactions in olfactory sensory neurons are widespread in freely breathing mice
بواسطة
Reddy, Gautam
,
Murthy, Venkatesh N.
,
Vergassola, Massimo
في
14/69
,
631/378/2624/2625
,
631/378/3917
2020
Odor landscapes contain complex blends of molecules that each activate unique, overlapping populations of olfactory sensory neurons (OSNs). Despite the presence of hundreds of OSN subtypes in many animals, the overlapping nature of odor inputs may lead to saturation of neural responses at the early stages of stimulus encoding. Information loss due to saturation could be mitigated by normalizing mechanisms such as antagonism at the level of receptor-ligand interactions, whose existence and prevalence remains uncertain. By imaging OSN axon terminals in olfactory bulb glomeruli as well as OSN cell bodies within the olfactory epithelium in freely breathing mice, we find widespread antagonistic interactions in binary odor mixtures. In complex mixtures of up to 12 odorants, antagonistic interactions are stronger and more prevalent with increasing mixture complexity. Therefore, antagonism is a common feature of odor mixture encoding in OSNs and helps in normalizing activity to reduce saturation and increase information transfer.
Odor blends contain molecules that activate unique, overlapping populations of sensory neurons (OSNs). Here, by imaging OSN axon terminals, as well as their cell bodies within the olfactory epithelium, the authors find widespread antagonistic interactions in binary and complex odor mixtures.
Journal Article
Access to the odor world: olfactory receptors and their role for signal transduction in insects
بواسطة
Pregitzer, Pablo
,
Krieger, Jürgen
,
Fleischer, Joerg
في
Animals
,
Biochemistry
,
Biomedical and Life Sciences
2018
The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.
Journal Article
Single-cell analysis of olfactory neurogenesis and differentiation in adult humans
بواسطة
Choi, Rhea
,
Goss, Garrett M
,
Goldstein, Bradley J
في
Attention
,
Cell differentiation
,
Communication
2020
The presence of active neurogenic niches in adult humans is controversial. We focused attention to the human olfactory neuroepithelium, an extracranial site supplying input to the olfactory bulbs of the brain. Using single-cell RNA sequencing analyzing 28,726 cells, we identified neural stem cell and neural progenitor cell pools and neurons. Additionally, we detailed the expression of 140 olfactory receptors. These data from the olfactory neuroepithelium niche provide evidence that neuron production may continue for decades in humans.Durante et al. report the presence of active neurogenic niches in adult humans using single-cell RNA sequencing of the human olfactory neuroepithelium. Data from the olfactory neuroepithelium niche provide evidence that neuron production may continue for decades in humans.
Journal Article
Valence opponency in peripheral olfactory processing
بواسطة
Martin, Vanessa
,
Grover, Dhruv
,
Chen, Jen-Yung
في
Animals
,
Biological Sciences
,
Computational neuroscience
2022
A hallmark of complex sensory systems is the organization of neurons into functionally meaningful maps, which allow for comparison and contrast of parallel inputs via lateral inhibition. However, it is unclear whether such a map exists in olfaction. Here, we address this question by determining the organizing principle underlying the stereotyped pairing of olfactory receptor neurons (ORNs) in Drosophila sensory hairs, wherein compartmentalized neurons inhibit each other via ephaptic coupling. Systematic behavioral assays reveal that most paired ORNs antagonistically regulate the same type of behavior. Such valence opponency is relevant in critical behavioral contexts including place preference, egg laying, and courtship. Odor-mixture experiments show that ephaptic inhibition provides a peripheral means for evaluating and shaping countervailing cues relayed to higher brain centers. Furthermore, computational modeling suggests that this organization likely contributes to processing ratio information in odor mixtures. This olfactory valence map may have evolved to swiftly process ethologically meaningful odor blends without involving costly synaptic computation.
Journal Article
Cortical representations of olfactory input by trans-synaptic tracing
بواسطة
Horowitz, Mark A.
,
Amat, Fernando
,
Moussavi, Farshid
في
631/1647/245/2227
,
631/378/2571/1696
,
631/378/2624
2011
In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of ‘starter’ cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.
Scent tracking
In the mouse, glomeruli in the olfactory bulb receive projections from single classes of olfactory neurons, thereby forming an odour map. Information from the glomeruli is then relayed to the cortex but the projection patterns from individual glomeruli are not known. Three papers now examine the details of this projection. Luo and colleagues use a combination of genetics and retrograde mono-trans-synaptic rabies virus labelling. They trace the presynaptic connections of individual cortical neurons and find no evidence of connections supporting a stereotyped odour map in the cortex, but see systematic topographical differences in amygdala connectivity. The lack of stereotypical cortical projection is corroborated, both at the level of bulk axonal patterning and in projections of individually labelled neurons, by two papers — one from the Axel laboratory, and one from the Baldwin laboratory — that examine the anterograde projections from individual glomeruli. Together, these findings provide anatomical evidence for combinatorial processing of information from diverse glomeruli by cortical neurons and may also reflect different functions of various areas in mediating innate or learned odour preferences.
Journal Article
Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner
2019
The nervous system regulates host immunity in complex ways. Vertebrate olfactory sensory neurons (OSNs) are located in direct contact with pathogens; however, OSNs’ ability to detect danger and initiate immune responses is unclear. We report that nasal delivery of rhabdoviruses induces apoptosis in crypt OSNs via the interaction of the OSN TrkA receptor with the viral glycoprotein in teleost fish. This signal results in electrical activation of neurons and very rapid proinflammatory responses in the olfactory organ (OO), but dampened inflammation in the olfactory bulb (OB). CD8α⁺ cells infiltrate the OO within minutes of nasal viral delivery, and TrkA blocking, but not caspase-3 blocking, abrogates this response. Infiltrating CD8α⁺ cells were TCRαβ T cells with a nonconventional phenotype that originated from the microvasculature surrounding the OB and not the periphery. Nasal delivery of viral glycoprotein (G protein) recapitulated the immune responses observed with the whole virus, and antibody blocking of viral G protein abrogated these responses. Ablation of crypt neurons in zebrafish resulted in increased susceptibility to rhabdoviruses. These results indicate a function for OSNs as a first layer of pathogen detection in vertebrates and as orchestrators of nasal–CNS antiviral immune responses.
Journal Article
Fast odour dynamics are encoded in the olfactory system and guide behaviour
2021
Odours are transported in turbulent plumes, which result in rapid concentration fluctuations
1
,
2
that contain rich information about the olfactory scenery, such as the composition and location of an odour source
2
–
4
. However, it is unclear whether the mammalian olfactory system can use the underlying temporal structure to extract information about the environment. Here we show that ten-millisecond odour pulse patterns produce distinct responses in olfactory receptor neurons. In operant conditioning experiments, mice discriminated temporal correlations of rapidly fluctuating odours at frequencies of up to 40 Hz. In imaging and electrophysiological recordings, such correlation information could be readily extracted from the activity of mitral and tufted cells—the output neurons of the olfactory bulb. Furthermore, temporal correlation of odour concentrations
5
reliably predicted whether odorants emerged from the same or different sources in naturalistic environments with complex airflow. Experiments in which mice were trained on such tasks and probed using synthetic correlated stimuli at different frequencies suggest that mice can use the temporal structure of odours to extract information about space. Thus, the mammalian olfactory system has access to unexpectedly fast temporal features in odour stimuli. This endows animals with the capacity to overcome key behavioural challenges such as odour source separation
5
, figure–ground segregation
6
and odour localization
7
by extracting information about space from temporal odour dynamics.
Fast temporal dynamics of the olfactory environment can be perceived by mice and used to perform scene segmentation.
Journal Article
Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly
2017
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
Journal Article
Therapeutic potential of ectopic olfactory and taste receptors
بواسطة
Depoortere, Inge
,
Lee, Sung-Joon
,
Hatt, Hanns
في
Bronchodilators
,
Cancer
,
Clinical trials
2019
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Journal Article
Centrioles are amplified in cycling progenitors of olfactory sensory neurons
2020
Olfaction in most animals is mediated by neurons bearing cilia that are accessible to the environment. Olfactory sensory neurons (OSNs) in chordates usually have multiple cilia, each with a centriole at its base. OSNs differentiate from stem cells in the olfactory epithelium, and how the epithelium generates cells with many centrioles is not yet understood. We show that centrioles are amplified via centriole rosette formation in both embryonic development and turnover of the olfactory epithelium in adult mice, and rosette-bearing cells often have free centrioles in addition. Cells with amplified centrioles can go on to divide, with centrioles clustered at each pole. Additionally, we found that centrioles are amplified in immediate neuronal precursors (INPs) concomitant with elevation of mRNA for polo-like kinase 4 (Plk4) and SCL/Tal1-interrupting locus gene (Stil), key regulators of centriole duplication. These results support a model in which centriole amplification occurs during a transient state characterized by elevated Plk4 and Stil in early INP cells. These cells then go on to divide at least once to become OSNs, demonstrating that cell division with amplified centrioles, known to be tolerated in disease states, can occur as part of a normal developmental program.
Journal Article