Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
29,240
result(s) for
"Probability and Statistics in Computer Science"
Sort by:
Business analytics using R - A practical approach
Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. You will:? Write R programs to handle data? Build analytical models and draw useful inferences from them? Discover the basic concepts of data mining and machine learning? Carry out predictive modeling? Define a business issue as an analytical problem.
What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?
2021
Cross-validation using randomized subsets of data—known as k-fold cross-validation—is a powerful means of testing the success rate of models used for classification. However, few if any studies have explored how values of k (number of subsets) affect validation results in models tested with data of known statistical properties. Here, we explore conditions of sample size, model structure, and variable dependence affecting validation outcomes in discrete Bayesian networks (BNs). We created 6 variants of a BN model with known properties of variance and collinearity, along with data sets of n = 50, 500, and 5000 samples, and then tested classification success and evaluated CPU computation time with seven levels of folds (k = 2, 5, 10, 20, n − 5, n − 2, and n − 1). Classification error declined with increasing n, particularly in BN models with high multivariate dependence, and declined with increasing k, generally levelling out at k = 10, although k = 5 sufficed with large samples (n = 5000). Our work supports the common use of k = 10 in the literature, although in some cases k = 5 would suffice with BN models having independent variable structures.
Journal Article
An improved fire detection approach based on YOLO-v8 for smart cities
2023
Fires in smart cities can have devastating consequences, causing damage to property, and endangering the lives of citizens. Traditional fire detection methods have limitations in terms of accuracy and speed, making it challenging to detect fires in real time. This paper proposes an improved fire detection approach for smart cities based on the YOLOv8 algorithm, called the smart fire detection system (SFDS), which leverages the strengths of deep learning to detect fire-specific features in real time. The SFDS approach has the potential to improve the accuracy of fire detection, reduce false alarms, and be cost-effective compared to traditional fire detection methods. It can also be extended to detect other objects of interest in smart cities, such as gas leaks or flooding. The proposed framework for a smart city consists of four primary layers: (i) Application layer, (ii) Fog layer, (iii) Cloud layer, and (iv) IoT layer. The proposed algorithm utilizes Fog and Cloud computing, along with the IoT layer, to collect and process data in real time, enabling faster response times and reducing the risk of damage to property and human life. The SFDS achieved state-of-the-art performance in terms of both precision and recall, with a high precision rate of 97.1% for all classes. The proposed approach has several potential applications, including fire safety management in public areas, forest fire monitoring, and intelligent security systems.
Journal Article
Prairie Dog Optimization Algorithm
by
Abualigah, Laith
,
Ezugwu, Absalom E.
,
Gandomi, Amir H.
in
Acoustics
,
Algorithms
,
Artificial Intelligence
2022
This study proposes a new nature-inspired metaheuristic that mimics the behaviour of the prairie dogs in their natural habitat called the prairie dog optimization (PDO). The proposed algorithm uses four prairie dog activities to achieve the two common optimization phases, exploration and exploitation. The prairie dogs' foraging and burrow build activities are used to provide exploratory behaviour for PDO. The prairie dogs build their burrows around an abundant food source. As the food source gets depleted, they search for a new food source and build new burrows around it, exploring the whole colony or problem space to discover new food sources or solutions. The specific response of the prairie dogs to two unique communication or alert sound is used to accomplish exploitation. The prairie dogs have signals or sounds for different scenarios ranging from predator threats to food availability. Their communication skills play a significant role in satisfying the prairie dogs' nutritional needs and anti-predation abilities. These two specific behaviours result in the prairie dogs converging to a specific location or a promising location in the case of PDO implementation, where further search (exploitation) is carried out to find better or near-optimal solutions. The performance of PDO in carrying out optimization is tested on a set of twenty-two classical benchmark functions and ten CEC 2020 test functions. The experimental results demonstrate that PDO benefits from a good balance of exploration and exploitation. Compared with the results of other well-known population-based metaheuristic algorithms available in the literature, the PDO shows stronger performance and higher capabilities than the other algorithms. Furthermore, twelve benchmark engineering design problems are used to test the performance of PDO, and the results indicate that the proposed PDO is effective in estimating optimal solutions for real-world optimization problems with unknown global optima. The PDO algorithm source codes is publicly available at
https://www.mathworks.com/matlabcentral/fileexchange/110980-prairie-dog-optimization-algorithm
.
Journal Article
Evolutionary algorithms and their applications to engineering problems
by
Kwasnicka, Halina
,
Slowik, Adam
in
Artificial Intelligence
,
Computational Biology/Bioinformatics
,
Computational Science and Engineering
2020
The main focus of this paper is on the family of evolutionary algorithms and their real-life applications. We present the following algorithms: genetic algorithms, genetic programming, differential evolution, evolution strategies, and evolutionary programming. Each technique is presented in the pseudo-code form, which can be used for its easy implementation in any programming language. We present the main properties of each algorithm described in this paper. We also show many state-of-the-art practical applications and modifications of the early evolutionary methods. The open research issues are indicated for the family of evolutionary algorithms.
Journal Article
Parallel spatio-temporal attention-based TCN for multivariate time series prediction
by
Zhang, Ke
,
Huang, Yipan
,
Zhu, Yifei
in
Artificial Intelligence
,
Computational Biology/Bioinformatics
,
Computational Science and Engineering
2023
As industrial systems become more complex and monitoring sensors for everything from surveillance to our health become more ubiquitous, multivariate time series prediction is taking an important place in the smooth-running of our society. A recurrent neural network with attention to help extend the prediction windows is the current-state-of-the-art for this task. However, we argue that their vanishing gradients, short memories, and serial architecture make RNNs fundamentally unsuited to long-horizon forecasting with complex data. Temporal convolutional networks (TCNs) do not suffer from gradient problems and they support parallel calculations, making them a more appropriate choice. Additionally, they have longer memories than RNNs, albeit with some instability and efficiency problems. Hence, we propose a framework, called PSTA-TCN, that combines a parallel spatio-temporal attention mechanism to extract dynamic internal correlations with stacked TCN backbones to extract features from different window sizes. The framework makes full use parallel calculations to dramatically reduce training times, while substantially increasing accuracy with stable prediction windows up to 13 times longer than the status quo.
Journal Article
Improved YOLOv5 network for real-time multi-scale traffic sign detection
by
Chen, Yi
,
Wang, Junfan
,
Gao, Mingyu
in
Artificial Intelligence
,
Computational Biology/Bioinformatics
,
Computational Science and Engineering
2023
Traffic sign detection is a challenging task for the unmanned driving system, especially for the detection of multi-scale targets and the real-time problem of detection. In the traffic sign detection process, the scale of the targets changes greatly, which will have a certain impact on the detection accuracy. Feature pyramid is widely used to solve this problem, but due to the diversity of traffic sign sizes, it cannot accurately extract multi-size feature maps, thus destroying the feature consistency between traffic signs. Moreover, in practical application, it is difficult for common methods to improve the detection accuracy of multi-scale traffic signs while ensuring real-time detection. In this paper, we propose an improved feature pyramid model, named AF-FPN, which utilizes the adaptive attention module (AAM) and feature enhancement module (FEM) to reduce the information loss in the process of feature map generation and enhance the representation ability of the feature pyramid. We replaced the original feature pyramid network in YOLOv5 with AF-FPN, which improves the detection performance for multi-scale targets of the YOLOv5 network under the premise of ensuring real-time detection. Furthermore, a new automatic learning data augmentation method is proposed to enrich the dataset and improve the robustness of the model to make it more suitable for practical scenarios. Extensive experimental results on the Tsinghua-Tencent 100 K (TT100K) dataset demonstrate that compared with several state-of-the-art methods, our method is more universal and superior.
Journal Article
Deep learning: systematic review, models, challenges, and research directions
by
Talaei Khoei, Tala
,
Kaabouch, Naima
,
Ould Slimane, Hadjar
in
Artificial Intelligence
,
Automation
,
Computational Biology/Bioinformatics
2023
The current development in deep learning is witnessing an exponential transition into automation applications. This automation transition can provide a promising framework for higher performance and lower complexity. This ongoing transition undergoes several rapid changes, resulting in the processing of the data by several studies, while it may lead to time-consuming and costly models. Thus, to address these challenges, several studies have been conducted to investigate deep learning techniques; however, they mostly focused on specific learning approaches, such as supervised deep learning. In addition, these studies did not comprehensively investigate other deep learning techniques, such as deep unsupervised and deep reinforcement learning techniques. Moreover, the majority of these studies neglect to discuss some main methodologies in deep learning, such as transfer learning, federated learning, and online learning. Therefore, motivated by the limitations of the existing studies, this study summarizes the deep learning techniques into supervised, unsupervised, reinforcement, and hybrid learning-based models. In addition to address each category, a brief description of these categories and their models is provided. Some of the critical topics in deep learning, namely, transfer, federated, and online learning models, are explored and discussed in detail. Finally, challenges and future directions are outlined to provide wider outlooks for future researchers.
Journal Article
Attention mechanism in neural networks: where it comes and where it goes
2022
A long time ago in the machine learning literature, the idea of incorporating a mechanism inspired by the human visual system into neural networks was introduced. This idea is named the
attention mechanism
, and it has gone through a long development period. Today, many works have been devoted to this idea in a variety of tasks. Remarkable performance has recently been demonstrated. The goal of this paper is to provide an overview from the early work on searching for ways to implement attention idea with neural networks until the recent trends. This review emphasizes the important milestones during this progress regarding different tasks. By this way, this study aims to provide a road map for researchers to explore the current development and get inspired for novel approaches beyond the attention.
Journal Article
An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets
by
Khan, Qaisar
,
Ullah, Kifayat
,
Mahmood, Tahir
in
Artificial Intelligence
,
Computational Biology/Bioinformatics
,
Computational Science and Engineering
2019
Human opinion cannot be restricted to yes or no as depicted by conventional fuzzy set (FS) and intuitionistic fuzzy set (IFS) but it can be yes, abstain, no and refusal as explained by picture fuzzy set (PFS). In this article, the concept of spherical fuzzy set (SFS) and T-spherical fuzzy set (T-SFS) is introduced as a generalization of FS, IFS and PFS. The novelty of SFS and T-SFS is shown by examples and graphical comparison with early established concepts. Some operations of SFSs and T-SFSs along with spherical fuzzy relations are defined, and related results are conferred. Medical diagnostics and decision-making problem are discussed in the environment of SFSs and T-SFSs as practical applications.
Journal Article