Catalogue Search | MBRL
نتائج البحث
MBRLSearchResults
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
-
الضبطالضبط
-
مُحَكَّمةمُحَكَّمة
-
السلسلةالسلسلة
-
مستوى القراءةمستوى القراءة
-
السنةمن:-إلى:
-
المزيد من المرشحاتالمزيد من المرشحاتنوع المحتوىنوع العنصرلديه النص الكاملالموضوعبلد النشرالناشرالمصدرالجمهور المستهدفالمتبرعاللغةمكان النشرالمؤلفينموقع
منجز
مرشحات
إعادة تعيين
1,317,586
نتائج ل
"structure"
صنف حسب:
Cubic Action of a Rank one Group
بواسطة
Grüninger, Matthias
في
Geometry -- Finite geometry and special incidence structures -- Buildings and the geometry of diagrams. msc
,
Group theory
,
Group theory and generalizations -- Linear algebraic groups and related topics -- Linear algebraic groups over arbitrary fields. msc
2022
We consider a rank one group
eBook
Atomic and molecular structure
بواسطة
Chaffee, Joel
في
Atomic theory Juvenile literature.
,
Atomic structure Juvenile literature.
,
Molecular structure Juvenile literature.
2011
Learn about the atom, what it is, the people responsible for helping us understand it, and how it affects us in the world today.
Computational fluid-structure interaction
بواسطة
Bazilevs, Yuri
,
Tezduyar, Tayfun E
,
Takizawa, Kenji
في
Data processing
,
Drafting & Mechanical Drawing
,
Fluid-structure interaction
2013,2012
\"Computational Fluid-Structure Interaction is a complete, self-contained reference that takes the reader from the fundamentals of computational fluid and solid mechanics all the way to the state-of-the-art in CFSI research\"--
eBook
Statistical modelling of molecular descriptors in QSAR/QSPR
بواسطة
Dehmer, Matthias
,
Varmuza, Kurt
,
Bonchev, Danail
في
Bioinformatics
,
Models, Molecular
,
Models, Statistical
2012
This handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics.
eBook
Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping
2010
A shining example of doping
Many technological materials are intentionally 'doped' by the introduction of trace amounts of foreign elements to impart new and useful properties — a classic example is the doping of semiconductors. Feng Wang
et al
. describe a system in which lanthanide doping can be used to control the growth of NaYF
4
nanocrystals, making it possible to simultaneously tune the size, crystallographic phase and optical properties of the resulting materials. These findings increase our understanding of doping-induced structural transformations, and provide a straightforward route for the controlled synthesis of luminescent nanocrystals for many applications.
Many technological materials are intentionally 'doped' with foreign elements to impart new and desirable properties, a classic example being the doping of semiconductors to tune their electronic behaviour. Here lanthanide doping is used to control the growth of nanocrystals, allowing for simultaneous tuning of the size, crystallographic phase and optical properties of the hybrid material.
Doping is a widely applied technological process in materials science that involves incorporating atoms or ions of appropriate elements into host lattices to yield hybrid materials with desirable properties and functions. For nanocrystalline materials, doping is of fundamental importance in stabilizing a specific crystallographic phase
1
, modifying electronic properties
2
,
3
,
4
, modulating magnetism
5
as well as tuning emission properties
6
,
7
,
8
,
9
. Here we describe a material system in which doping influences the growth process to give simultaneous control over the crystallographic phase, size and optical emission properties of the resulting nanocrystals. We show that NaYF
4
nanocrystals can be rationally tuned in size (down to ten nanometres), phase (cubic or hexagonal) and upconversion
10
,
11
,
12
emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal phase and size arises from a strong dependence on the size and dipole polarizability of the substitutional dopant ion. Our results suggest that the doping-induced structural and size transition, demonstrated here in NaYF
4
upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels
12
to volumetric three-dimensional displays
13
.
Journal Article
Ultrastable silver nanoparticles
بواسطة
Guo, Jingshu
,
Yoon, Bokwon
,
Barnett, Robert N.
في
639/301/357/354
,
639/301/357/551
,
639/925/357/354
2013
Silver nanoparticles are susceptible to oxidation and have accordingly received less attention than gold nanoparticles; ultrastable silver nanoparticles are now reported, which can be produced in very large quantities as a single-sized molecular product, and the origins of their enhanced stability are elucidated using a single-crystal X-ray structure and first-principles calculations.
Silver nanoparticles as good as gold
Noble metals in nanoparticulate form find practical application as catalysts and in optoelectronics, energy conservation and many other fields. Gold nanoparticles, stable and easy to use, have proved much more useful and so have been studied more extensively than silver nanoparticles, which tend to be susceptible to oxidation. Anil Desireddy
et al
. describe a simple recipe for the large-scale production of single-sized silver nanoclusters, whose electronic structure gives them exceptional chemical stability. With the availability of stable silver nanoparticles, the metal's desirable electrical and physical properties, abundance and comparatively low cost could be harnessed in a wealth of new applications.
Noble-metal nanoparticles have had a substantial impact across a diverse range of fields, including catalysis
1
, sensing
2
, photochemistry
3
, optoelectronics
4
,
5
, energy conversion
6
and medicine
7
. Although silver has very desirable physical properties, good relative abundance and low cost, gold nanoparticles have been widely favoured owing to their proved stability and ease of use. Unlike gold, silver is notorious for its susceptibility to oxidation (tarnishing), which has limited the development of important silver-based nanomaterials. Despite two decades of synthetic efforts, silver nanoparticles that are inert or have long-term stability remain unrealized. Here we report a simple synthetic protocol for producing ultrastable silver nanoparticles, yielding a single-sized molecular product in very large quantities with quantitative yield and without the need for size sorting. The stability, purity and yield are substantially better than those for other metal nanoparticles, including gold, owing to an effective stabilization mechanism. The particular size and stoichiometry of the product were found to be insensitive to variations in synthesis parameters. The chemical stability and structural, electronic and optical properties can be understood using first-principles electronic structure theory based on an experimental single-crystal X-ray structure. Although several structures have been determined for protected gold nanoclusters
8
,
9
,
10
,
11
,
12
, none has been reported so far for silver nanoparticles. The total structure of a thiolate-protected silver nanocluster reported here uncovers the unique structure of the silver thiolate protecting layer, consisting of Ag
2
S
5
capping structures. The outstanding stability of the nanoparticle is attributed to a closed-shell 18-electron configuration with a large energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, an ultrastable 32-silver-atom excavated-dodecahedral
13
core consisting of a hollow 12-silver-atom icosahedron encapsulated by a 20-silver-atom dodecahedron, and the choice of protective coordinating ligands. The straightforward synthesis of large quantities of pure molecular product promises to make this class of materials widely available for further research and technology development
14
,
15
,
16
,
17
,
18
.
Journal Article