MbrlCatalogueTitleDetail

هل ترغب في حجز الكتاب؟
STT: Stateful Tracking with Transformers for Autonomous Driving
STT: Stateful Tracking with Transformers for Autonomous Driving
لقد وضعنا الحجز لك!
لقد وضعنا الحجز لك!
بالمناسبة ، لماذا لا تستكشف الفعاليات التي يمكنك حضورها عند زيارتك للمكتبة لإستلام كتبك
أنت حاليًا في قائمة الانتظار لالتقاط هذا الكتاب. سيتم إخطارك بمجرد انتهاء دورك في التقاط الكتاب
عفوًا! هناك خطأ ما.
عفوًا! هناك خطأ ما.
يبدو أننا لم نتمكن من وضع الحجز. يرجى المحاولة مرة أخرى في وقت لاحق.
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
STT: Stateful Tracking with Transformers for Autonomous Driving
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
تم إضافة الكتاب إلى الرف الخاص بك!
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل تريد طلب الكتاب؟
STT: Stateful Tracking with Transformers for Autonomous Driving
STT: Stateful Tracking with Transformers for Autonomous Driving

يرجى العلم أن الكتاب الذي طلبته لا يمكن استعارته. إذا كنت ترغب في إستعارة هذا الكتاب ، يمكنك حجز نسخة أخرى
كيف تريد الحصول عليه؟
لقد طلبنا الكتاب لك! عذرا ، تسليم الروبوت غير متوفر في الوقت الحالي
لقد طلبنا الكتاب لك!
لقد طلبنا الكتاب لك!
تم معالجة طلبك بنجاح وستتم معالجته خلال ساعات عمل المكتبة. يرجى التحقق من حالة طلبك في طلباتي.
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
يبدو أننا لم نتمكن من تقديم طلبك. يرجى المحاولة مرة أخرى في وقت لاحق.
STT: Stateful Tracking with Transformers for Autonomous Driving
STT: Stateful Tracking with Transformers for Autonomous Driving
Paper

STT: Stateful Tracking with Transformers for Autonomous Driving

2024
نظرة عامة
Tracking objects in three-dimensional space is critical for autonomous driving. To ensure safety while driving, the tracker must be able to reliably track objects across frames and accurately estimate their states such as velocity and acceleration in the present. Existing works frequently focus on the association task while either neglecting the model performance on state estimation or deploying complex heuristics to predict the states. In this paper, we propose STT, a Stateful Tracking model built with Transformers, that can consistently track objects in the scenes while also predicting their states accurately. STT consumes rich appearance, geometry, and motion signals through long term history of detections and is jointly optimized for both data association and state estimation tasks. Since the standard tracking metrics like MOTA and MOTP do not capture the combined performance of the two tasks in the wider spectrum of object states, we extend them with new metrics called S-MOTA and MOTPS that address this limitation. STT achieves competitive real-time performance on the Waymo Open Dataset.
الناشر
Cornell University Library, arXiv.org