تفاصيل الأصول
MbrlCatalogueTitleDetail
هل ترغب في حجز الكتاب؟
Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View
بواسطة
Rana, Santu
, Karmakar, Chandan
, Dimitrova, Nevenka
, Tran, Truyen
, Venkatesh, Svetha
, Berk, Michael
, Luo, Wei
, Phung, Dinh
, Yearwood, John
, Gupta, Sunil
, Ho, Tu Bao
, Shilton, Alistair
في
Big Data
/ Biomedical research
/ Biomedical Research - methods
/ Biomedical Research - standards
/ Biomedicine
/ Community research
/ Data analysis
/ Data Interpretation, Statistical
/ Data mining
/ Delphi method
/ Electronic mail systems
/ Flexibility
/ Grammatical aspect
/ Humans
/ Interdisciplinary Studies
/ Machine Learning
/ Medical model
/ Medical research
/ Models, Biological
/ Original Paper
/ Prediction models
/ Predictions
/ Prone
/ Researchers
/ Statistical methods
/ Variables
2016
لقد وضعنا الحجز لك!
بالمناسبة ، لماذا لا تستكشف الفعاليات التي يمكنك حضورها عند زيارتك للمكتبة لإستلام كتبك
أنت حاليًا في قائمة الانتظار لالتقاط هذا الكتاب. سيتم إخطارك بمجرد انتهاء دورك في التقاط الكتاب
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View
بواسطة
Rana, Santu
, Karmakar, Chandan
, Dimitrova, Nevenka
, Tran, Truyen
, Venkatesh, Svetha
, Berk, Michael
, Luo, Wei
, Phung, Dinh
, Yearwood, John
, Gupta, Sunil
, Ho, Tu Bao
, Shilton, Alistair
في
Big Data
/ Biomedical research
/ Biomedical Research - methods
/ Biomedical Research - standards
/ Biomedicine
/ Community research
/ Data analysis
/ Data Interpretation, Statistical
/ Data mining
/ Delphi method
/ Electronic mail systems
/ Flexibility
/ Grammatical aspect
/ Humans
/ Interdisciplinary Studies
/ Machine Learning
/ Medical model
/ Medical research
/ Models, Biological
/ Original Paper
/ Prediction models
/ Predictions
/ Prone
/ Researchers
/ Statistical methods
/ Variables
2016
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل تريد طلب الكتاب؟
Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View
بواسطة
Rana, Santu
, Karmakar, Chandan
, Dimitrova, Nevenka
, Tran, Truyen
, Venkatesh, Svetha
, Berk, Michael
, Luo, Wei
, Phung, Dinh
, Yearwood, John
, Gupta, Sunil
, Ho, Tu Bao
, Shilton, Alistair
في
Big Data
/ Biomedical research
/ Biomedical Research - methods
/ Biomedical Research - standards
/ Biomedicine
/ Community research
/ Data analysis
/ Data Interpretation, Statistical
/ Data mining
/ Delphi method
/ Electronic mail systems
/ Flexibility
/ Grammatical aspect
/ Humans
/ Interdisciplinary Studies
/ Machine Learning
/ Medical model
/ Medical research
/ Models, Biological
/ Original Paper
/ Prediction models
/ Predictions
/ Prone
/ Researchers
/ Statistical methods
/ Variables
2016
يرجى العلم أن الكتاب الذي طلبته لا يمكن استعارته. إذا كنت ترغب في إستعارة هذا الكتاب ، يمكنك حجز نسخة أخرى
Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View
Journal Article
Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View
2016
الطلب من المخزن الآلي
واختر طريقة الاستلام
نظرة عامة
As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs.
To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence.
A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method.
The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models.
A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community.
الناشر
Gunther Eysenbach MD MPH, Associate Professor,JMIR Publications
يستخدم هذا الموقع ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا.