Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
16,296 result(s) for "Renal cell Carcinoma"
Sort by:
Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures
Tumor-infiltrating immune cells have been linked to prognosis and response to immunotherapy; however, the levels of distinct immune cell subsets and the signals that draw them into a tumor, such as the expression of antigen presenting machinery genes, remain poorly characterized. Here, we employ a gene expression-based computational method to profile the infiltration levels of 24 immune cell populations in 19 cancer types. We compare cancer types using an immune infiltration score and a T cell infiltration score and find that clear cell renal cell carcinoma (ccRCC) is among the highest for both scores. Using immune infiltration profiles as well as transcriptomic and proteomic datasets, we characterize three groups of ccRCC tumors: T cell enriched, heterogeneously infiltrated, and non-infiltrated. We observe that the immunogenicity of ccRCC tumors cannot be explained by mutation load or neo-antigen load, but is highly correlated with MHC class I antigen presenting machinery expression (APM). We explore the prognostic value of distinct T cell subsets and show in two cohorts that Th17 cells and CD8 T/Treg ratio are associated with improved survival, whereas Th2 cells and Tregs are associated with negative outcomes. Investigation of the association of immune infiltration patterns with the subclonal architecture of tumors shows that both APM and T cell levels are negatively associated with subclone number. Our analysis sheds light on the immune infiltration patterns of 19 human cancers and unravels mRNA signatures with prognostic utility and immunotherapeutic biomarker potential in ccRCC.
High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade
Although elevated plasma interleukin-8 (pIL-8) has been associated with poor outcome to immune checkpoint blockade , this has not been comprehensively evaluated in large randomized studies. Here we analyzed circulating pIL-8 and IL8 gene expression in peripheral blood mononuclear cells and tumors of patients treated with atezolizumab (anti-PD-L1 monoclonal antibody) from multiple randomized trials representing 1,445 patients with metastatic urothelial carcinoma (mUC) and metastatic renal cell carcinoma. High levels of IL-8 in plasma, peripheral blood mononuclear cells and tumors were associated with decreased efficacy of atezolizumab in patients with mUC and metastatic renal cell carcinoma, even in tumors that were classically CD8  T cell inflamed. Low baseline pIL-8 in patients with mUC was associated with increased response to atezolizumab and chemotherapy. Patients with mUC who experienced on-treatment decreases in pIL-8 exhibited improved overall survival when treated with atezolizumab but not with chemotherapy. Single-cell RNA sequencing of the immune compartment showed that IL8 is primarily expressed in circulating and intratumoral myeloid cells and that high IL8 expression is associated with downregulation of the antigen-presentation machinery. Therapies that can reverse the impacts of IL-8-mediated myeloid inflammation will be essential for improving outcomes of patients treated with immune checkpoint inhibitors.
Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma
Lenvatinib plus either pembrolizumab or everolimus was compared with sunitinib as first-line therapy for advanced renal cell cancer. Progression-free survival was significantly longer with lenvatinib plus pembrolizumab than with sunitinib. Lenvatinib plus everolimus was also more effective than sunitinib, but the difference was smaller.
Targeting the HIF2-VEGF axis in renal cell carcinoma
Insights into the role of the tumor suppressor pVHL in oxygen sensing motivated the testing of drugs that target the transcription factor HIF or HIF-responsive growth factors, such as VEGF, for the treatment of cancers caused by VHL inactivation, such as clear-cell renal cell carcinoma (ccRCC). Multiple VEGF inhibitors are now approved for the treatment of ccRCC, and a HIF2α inhibitor has advanced to phase 3 development for this disease. These inhibitors are now also increasingly combined with immune-checkpoint blockers. In this Perspective, we describe the understanding of the mechanisms of oxygen sensing and hypoxia signaling that resulted in the development of HIF2α-targeted therapies for patients with VHL-associated tumors. We also present future directions for extending the use of these therapies to other cancers.
Long noncoding RNA MRCCAT1 promotes metastasis of clear cell renal cell carcinoma via inhibiting NPR3 and activating p38-MAPK signaling
Recent evidences showed that long noncoding RNAs (lncRNAs) are frequently dysregulated and play important roles in various cancers. Clear cell renal cell carcinoma (ccRCC) is one of the leading cause of cancer-related death, largely due to the metastasis of ccRCC. However, the clinical significances and roles of lncRNAs in metastatic ccRCC are still unknown. lncRNA expression microarray analysis was performed to search the dysregulated lncRNA in metastatic ccRCC. quantitative real-time PCR was performed to measure the expression of lncRNAs in human ccRCC samples. Gain-of-function and loss-of-function experiments were performed to investigate the biological roles of lncRNAs on ccRCC cell proliferation, migration, invasion and in vivo metastasis. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and western blot were performed to explore the molecular mechanisms underlying the functions of lncRNAs. The microarray analysis identified a novel lncRNA termed metastatic renal cell carcinoma-associated transcript 1 (MRCCAT1), which is highly expressed in metastatic ccRCC tissues and associated with the metastatic properties of ccRCC. Multivariate Cox regression analysis revealed that MRCCAT1 is an independent prognostic factor for ccRCC patients. Overexpression of MRCCAT1 promotes ccRCC cells proliferation, migration, and invasion. Depletion of MRCCAT1 inhibites ccRCC cells proliferation, migration, and invasion in vitro, and ccRCC metastasis in vivo. Mechanistically, MRCCAT1 represses NPR3 transcription by recruiting PRC2 to NPR3 promoter, and subsequently activates p38-MAPK signaling pathway. MRCCAT1 is a critical lncRNA that promotes ccRCC metastasis via inhibiting NPR3 and activating p38-MAPK signaling. Our results imply that MRCCAT1 could serve as a prognostic biomarker and therapeutic target for ccRCC.
Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes
Improving early cancer detection has the potential to substantially reduce cancer-related mortality. Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) is a highly sensitive assay capable of detecting early-stage tumors. We report accurate classification of patients across all stages of renal cell carcinoma (RCC) in plasma (area under the receiver operating characteristic (AUROC) curve of 0.99) and demonstrate the validity of this assay to identify patients with RCC using urine cell-free DNA (cfDNA; AUROC of 0.86).
Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial
The first interim analysis of the KEYNOTE-426 study showed superior efficacy of pembrolizumab plus axitinib over sunitinib monotherapy in treatment-naive, advanced renal cell carcinoma. The exploratory analysis with extended follow-up reported here aims to assess long-term efficacy and safety of pembrolizumab plus axitinib versus sunitinib monotherapy in patients with advanced renal cell carcinoma. In the ongoing, randomised, open-label, phase 3 KEYNOTE-426 study, adults (≥18 years old) with treatment-naive, advanced renal cell carcinoma with clear cell histology were enrolled in 129 sites (hospitals and cancer centres) across 16 countries. Patients were randomly assigned (1:1) to receive 200 mg pembrolizumab intravenously every 3 weeks for up to 35 cycles plus 5 mg axitinib orally twice daily or 50 mg sunitinib monotherapy orally once daily for 4 weeks per 6-week cycle. Randomisation was done using an interactive voice response system or integrated web response system, and was stratified by International Metastatic Renal Cell Carcinoma Database Consortium risk status and geographical region. Primary endpoints were overall survival and progression-free survival in the intention-to-treat population. Since the primary endpoints were met at the first interim analysis, updated data are reported with nominal p values. This study is registered with ClinicalTrials.gov, NCT02853331. Between Oct 24, 2016, and Jan 24, 2018, 861 patients were randomly assigned to receive pembrolizumab plus axitinib (n=432) or sunitinib monotherapy (n=429). With a median follow-up of 30·6 months (IQR 27·2–34·2), continued clinical benefit was observed with pembrolizumab plus axitinib over sunitinib in terms of overall survival (median not reached with pembrolizumab and axitinib vs 35·7 months [95% CI 33·3–not reached] with sunitinib); hazard ratio [HR] 0·68 [95% CI 0·55–0·85], p=0·0003) and progression-free survival (median 15·4 months [12·7–18·9] vs 11·1 months [9·1–12·5]; 0·71 [0·60–0·84], p<0·0001). The most frequent (≥10% patients in either group) treatment-related grade 3 or worse adverse events were hypertension (95 [22%] of 429 patients in the pembrolizumab plus axitinib group vs 84 [20%] of 425 patients in the sunitinib group), alanine aminotransferase increase (54 [13%] vs 11 [3%]), and diarrhoea (46 [11%] vs 23 [5%]). No new treatment-related deaths were reported since the first interim analysis. With extended study follow-up, results from KEYNOTE-426 show that pembrolizumab plus axitinib continues to have superior clinical outcomes over sunitinib. These results continue to support the first-line treatment with pembrolizumab plus axitinib as the standard of care of advanced renal cell carcinoma. Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc.
Targeting renal cell carcinoma with a HIF-2 antagonist
Clear cell renal cell carcinoma (ccRCC) is characterized by inactivation of the von Hippel-Lindau tumour suppressor gene (VHL). Because no other gene is mutated as frequently in ccRCC and VHL mutations are truncal, VHL inactivation is regarded as the governing event. VHL loss activates the HIF-2 transcription factor, and constitutive HIF-2 activity restores tumorigenesis in VHL-reconstituted ccRCC cells. HIF-2 has been implicated in angiogenesis and multiple other processes, but angiogenesis is the main target of drugs such as the tyrosine kinase inhibitor sunitinib. HIF-2 has been regarded as undruggable. Here we use a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective HIF-2 antagonist that was identified using a structure-based design approach. PT2399 dissociated HIF-2 (an obligatory heterodimer of HIF-2α-HIF-1β) in human ccRCC cells and suppressed tumorigenesis in 56% (10 out of 18) of such lines. PT2399 had greater activity than sunitinib, was active in sunitinib-progressing tumours, and was better tolerated. Unexpectedly, some VHL-mutant ccRCCs were resistant to PT2399. Resistance occurred despite HIF-2 dissociation in tumours and evidence of Hif-2 inhibition in the mouse, as determined by suppression of circulating erythropoietin, a HIF-2 target and possible pharmacodynamic marker. We identified a HIF-2-dependent gene signature in sensitive tumours. Gene expression was largely unaffected by PT2399 in resistant tumours, illustrating the specificity of the drug. Sensitive tumours exhibited a distinguishing gene expression signature and generally higher levels of HIF-2α. Prolonged PT2399 treatment led to resistance. We identified binding site and second site suppressor mutations in HIF-2α and HIF-1β, respectively. Both mutations preserved HIF-2 dimers despite treatment with PT2399. Finally, an extensively pretreated patient whose tumour had given rise to a sensitive tumourgraft showed disease control for more than 11 months when treated with a close analogue of PT2399, PT2385. We validate HIF-2 as a target in ccRCC, show that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials.
Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma
Human endogenous retroviruses (hERVs) are remnants of exogenous retroviruses that have integrated into the genome throughout evolution. We developed a computational workflow, hervQuant, which identified more than 3,000 transcriptionally active hERVs within The Cancer Genome Atlas (TCGA) pan-cancer RNA-Seq database. hERV expression was associated with clinical prognosis in several tumor types, most significantly clear cell renal cell carcinoma (ccRCC). We explored two mechanisms by which hERV expression may influence the tumor immune microenvironment in ccRCC: (i) RIG-I-like signaling and (ii) retroviral antigen activation of adaptive immunity. We demonstrated the ability of hERV signatures associated with these immune mechanisms to predict patient survival in ccRCC, independent of clinical staging and molecular subtyping. We identified potential tumor-specific hERV epitopes with evidence of translational activity through the use of a ccRCC ribosome profiling (Ribo-Seq) dataset, validated their ability to bind HLA in vitro, and identified the presence of MHC tetramer-positive T cells against predicted epitopes. hERV sequences identified through this screening approach were significantly more highly expressed in ccRCC tumors responsive to treatment with programmed death receptor 1 (PD-1) inhibition. hervQuant provides insights into the role of hERVs within the tumor immune microenvironment, as well as evidence that hERV expression could serve as a biomarker for patient prognosis and response to immunotherapy.
B cells and tertiary lymphoid structures promote immunotherapy response
Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity , although these have been less well-studied in ICB treatment . A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter ) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets.