Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Ólafsdóttir, Elín Soffia"
Sort by:
Mycobiont-specific primers facilitate the amplification of mitochondrial small subunit ribosomal DNA: a focus on the lichenized fungal genus Melanelia (Ascomycota, Parmeliaceae) in Iceland
The fungal mitochondrial small subunit (mtSSU) ribosomal DNA is one of the most commonly used loci for phylogenetic analysis of lichen-forming fungi, but their primer specificity to mycobionts has not been evaluated. The current study aimed to design mycobiont-specific mtSSU primers and highlights their utility with an example from the saxicolous lichen-forming fungal genus Melanelia Essl. in Iceland. The study found a 12.5% success rate (3 out of 24 specimens with good-quality mycobiont mtSSU sequences) using universal primers (i.e. mrSSU1 and mrSSU3R), not including off-target amplification of environmental fungi, e.g. Cladophialophora carrionii and Lichenothelia convexa . New mycobiont-specific primers (mt-SSU-581-5’ and mt-SSU-1345-3’) were designed by targeting mycobiont-specific nucleotide sites in comparison with environmental fungal sequences, and assessed for mycobiont primer specificity using in silico PCR. The new mycobiont-specific mtSSU primers had a success rate of 91.7% (22 out of 24 specimens with good-quality mycobiont mtSSU sequences) on the studied Melanelia specimens. Additional testing confirmed the specificity and yielded amplicons from 79 specimens of other Parmeliaceae mycobiont lineages. This study highlights the effectiveness of designing mycobiont-specific primers for studies on lichen identification, barcoding and phylogenetics.
The algal partnership is associated with quantitative variation of lichen specific metabolites in Cladonia foliacea from Central and Southern Europe
Lichen specific metabolites (LSMs) have interesting biological activities and quantitative variations may be present intraspecifically. For example, variations in medullary fumarprotocetraric acid (FA) and cortical usnic acid (UA) were observed in the lichen Cladonia foliacea , but the mechanism of variation is not well understood. The current study aimed to characterise the quantitative variation of FA and UA and to investigate the association between lichen metabolite content and ecological / biological variables. Fungal and algal trees were constructed using fungal (nrITS, RPB2) and algal (nrITS) loci, respectively. Using a chiral chromatographic method, the contents of (-)-UA were determined in 29 C. foliacea specimens and range from 6.88 to 34.27 mg/g dry wt. The FA contents were lower and varied from 1.44 to 9.87 mg/g dry wt. Although the fungal tree showed two well resolved clades, no significant differences of UA or FA contents were found between the two fungal clades. However, a significantly higher UA/FA ratio as well as a unique habitat were found to be associated with specimens which contained the alga Asterochloris lobophora than those specimens associated other Asterochloris algae. Taking all predictive variables into account (i.e. substrate type, elevation, collection season, photobiont identity), the multivariate data analysis indicated that photobiont identity explained most of the variance of LSM contents in C. foliacea . Thus future LSM biosynthetic studies should take the photobiont into consideration when dealing with intraspecific quantitative variation.
Is the Reindeer Lichen Cladonia arbuscula Really Producing Isousnic Acid? A Chemotaxonomy Query
Isousnic acid (isoUA) has been detected in a few usnic acid (UA)-producing lichens with chemotaxonomic values. IsoUA was first isolated from a specimen belonging to Cladonia arbuscula s.l. (referred to as C. mitis in the publication). However, the isolation and detection of isoUA in this Cladonia species have not been reproduced and confirmed with clear evidence. This study focused on C. arbuscula s.l. collected in Iceland and aimed to (1) identify the lichen specimen using DNA barcoding and (2) investigate whether isoUA is produced using a series of chromatographic methods. The fungal nuclear ribosomal internal transcribed spacer (nrITS) barcode was sequenced, and the specimen was identified as C. arbuscula, following recent circumscription recommendations. Routine metabolite profiling did not detect isoUA, and it could only be identified after vigorous chromatographic purification and concentration steps using flash chromatography and preparative high-performance liquid chromatography. IsoUA was found in trace quantities (~24 µg/g dry weight), which likely explains its absence in routine metabolite profiling. A rapid ultra-high-performance liquid chromatography (UHPLC) method using a pentafluorophenyl column was developed to separate UA and isoUA. Our study highlights the importance of an integrative approach combining DNA barcoding and detailed chromatographic analyses for lichen chemistry research.
Biodiversity of benthic invertebrates and bioprospecting in Icelandic waters
Iceland is an island in the North Atlantic Ocean, with an exclusive economic zone of 200 nautical miles that is largely unexplored with respect to chemical constituents of the marine biota. Iceland is a geothermally active area and hosts both hot and cold adapted organisms on land and in the ocean around it. In particular, the confluence of cold and warm water masses and geothermal activity creates a unique marine environment that has not been evaluated for the potential of marine natural product diversity. Marine organisms need to protect themselves from other organisms trying to overgrow, and some need to secure their place on the bottom of the ocean. Unexplored and unique areas such as the hydrothermal vent site at the sea floor in Eyjafjordur are of particular interest. In 1992 a collaborative research programme on collecting and identifying benthic invertebrates around Iceland (BIOICE) was established, with participation of Icelandic and foreign institutes, universities and taxonomists on benthic invertebrates from all over the world. Since the programme started almost 2,000 species have been identified and of those 41 species are new to science. Our recent bioprospecting project is directed towards the first systematic investigation of the marine natural product diversity of benthic invertebrates occurring in Icelandic waters, and their potential for drug-lead discovery in several key therapeutic areas.