Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
71 result(s) for "ANDELMAN, SANDY J."
Sort by:
Scaling up area-based conservation to implement the Global Biodiversity Framework’s 30x30 target: The role of Nature’s Strongholds
The Global Biodiversity Framework (GBF), signed in 2022 by Parties to the Convention on Biological Diversity, recognized the importance of area-based conservation, and its goals and targets specify the characteristics of protected and conserved areas (PCAs) that disproportionately contribute to biodiversity conservation. To achieve the GBF’s target of conserving a global area of 30% by 2030, this Essay argues for recognizing these characteristics and scaling them up through the conservation of areas that are: extensive (typically larger than 5,000 km 2 ); have interconnected PCAs (either physically or as part of a jurisdictional network, and frequently embedded in larger conservation landscapes); have high ecological integrity; and are effectively managed and equitably governed. These areas are presented as “Nature’s Strongholds,” illustrated by examples from the Congo and Amazon basins. Conserving Nature’s Strongholds offers an approach to scale up initiatives to address global threats to biodiversity.
Community structure and diversity of tropical forest mammals: data from a global camera trap network
Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites—located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica—are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find that mammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions.
Robust Decision-Making under Severe Uncertainty for Conservation Management
In conservation biology it is necessary to make management decisions for endangered and threatened species under severe uncertainty. Failure to acknowledge and treat uncertainty can lead to poor decisions. To illustrate the importance of considering uncertainty, we reanalyze a decision problem for the Sumatran rhino, Dicerorhinus sumatrensis, using information-gap theory to propagate uncertainties and to rank management options. Rather than requiring information about the extent of parameter uncertainty at the outset, information-gap theory addresses the question of how much uncertainty can be tolerated before our decision would change. It assesses the robustness of decisions in the face of severe uncertainty. We show that different management decisions may result when uncertainty in utilities and probabilities are considered in decision-making problems. We highlight the importance of a full assessment of uncertainty in conservation management decisions to avoid, as much as possible, undesirable outcomes.
Umbrellas and Flagships: Efficient Conservation Surrogates or Expensive Mistakes?
The use of umbrella and flagship species as surrogates for regional biota whose spatial distributions are poorly known is a popular conservation strategy. Yet many assumptions underlying the choice of surrogate species remain untested. By using biodiversity databases containing spatial incidence data for species of concern for (i) the southern California coastal sage scrub habitat, (ii) the Columbia Plateau ecoregion, and (iii) the continental United States, we evaluate the potential effectiveness of a range of conservation surrogate schemes (e.g., big carnivores, charismatic species, keystone species, wide-ranging species), asking how many species potentially are protected by each scheme and at what cost in each habitat area. For all three databases, we find that none of the surrogate schemes we evaluated performs significantly better than do a comparable number of species randomly selected from the database. Although some surrogate species may have considerable publicity value, based on the databases we analyzed, representing diverse taxa on three different geographic scales, we find that the utility of umbrella and flagship species as surrogates for regional biodiversity may be limited.
Global Gap Analysis: Priority Regions for Expanding the Global Protected-Area Network
Protected areas are the single most important conservation tool. The global protected-area network has grown substantially in recent decades, now occupying 11.5% of Earth's land surface, but such growth has not been strategically aimed at maximizing the coverage of global biodiversity. In a previous study, we demonstrated that the global network is far from complete, even for the representation of terrestrial vertebrate species. Here we present a first attempt to provide a global framework for the next step of strategically expanding the network to cover mammals, amphibians, freshwater turtles and tortoises, and globally threatened birds. We identify unprotected areas of the world that have remarkably high conservation value (irreplaceability) and are under serious threat. These areas concentrate overwhelmingly in tropical and subtropical moist forests, particularly on tropical mountains and islands. The expansion of the global protected-area network in these regions is urgently needed to prevent the loss of unique biodiversity.
Using the Freshwater Health Index to Assess Hydropower Development Scenarios in the Sesan, Srepok and Sekong River Basin
Sustainable water resource management is a wicked problem, fraught with uncertainties, an indeterminate scope, and divergent social values and interests among stakeholders. To facilitate better management of Southeast Asia’s transboundary Sesan, Sekong and Srepok (3S) River basin, we used the Freshwater Health Index (FHI) to diagnose the basin’s current and likely future level of freshwater health. We used the conditions for December 2016 as a baseline, where Ecosystem Vitality and Ecosystem Services scored 66 and 80, respectively, out of a possible 100, whilst Governance & Stakeholders scored 43. Thus, the 3S provided a range of desired ecosystem services, but there were signs of environmental stress as well as undeveloped water governance systems and limited stakeholder engagement. We also modelled four hydropower development scenarios and found that increasing development reduced the scores of a subset of indicators. This compromised the future ability of the 3S basin’s ecosystem to provide its current range of services. The FHI helped identify data deficiencies, illuminated important social dynamics, made ecosystem–human–water dynamics more understandable to stakeholders, and examined the long-term dynamics of the basin.
Reliability of Relative Predictions in Population Viability Analysis
Despite numerous claims that population viability analysis (PVA) makes reliable predictions of the relative risks of extinction, there is little evidence to support this assertion. To assess the veracity of the claim, we investigated uncertainty in the relative predictions of a PVA model with simulation experiments. We used a stochastic Ricker model to investigate the reliability of predicted changes in risks of decline in response to changes in parameters, the reliability of ranking species in terms of their relative threat, and the reliability of choosing the better of two management decisions. The predicted changes in risks of decline within 100 years were more reliable than absolute predictions. We made useful predictions of relative risks using only 10 years of data. Across 160 different parameter combinations, the rank correlation between the true risks of extinction within 100 years and predicted risks was 0.59 with 10 years of data, increasing to 0.89 with 100 years of data. We identified the better of two management strategies 67-74% of the time using 10 years of data, increasing to 92-93% of the time with 100 years of data. Our results demonstrate that, despite considerable uncertainty in the predicted risks of decline, PVA may reliably contribute to the management of threatened species.
Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight
Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse.
Cyberinfrastructure for Observatory and Monitoring Networks: A Case Study from the TEAM Network
Environmental-monitoring and observatory networks currently operating or under development at the national, regional, and global scales have the potential to provide an unprecedented understanding of our natural environment and the threats that endanger it. The breadth of these networks, as well as advances in technology (e.g., from mobile devices to in situ sensors and multidimensional satellite sensor data), will result in larger volumes of data and more complex data sets than ever before. All of these networks require robust cyberinfrastructure to support their varying mission, governance, operational, and scientific objectives. In this article, we use the Tropical Ecology Assessment and Monitoring (TEAM) Network as a fully functional environmental-monitoring network case study to highlight the key cyberinfrastructure components and services that support the network. We provide valuable lessons from our experience building the TEAM Network cyberinfrastructure and suggest future improvements that have broad applicability for other observatory and monitoring networks.
Land use and land cover tools for climate adaptation
Land use and land cover interact with atmospheric conditions to determine current climate conditions, as well, as the impact of climate change and environmental variability on ecological systems. Such interactions are ubiquitous, yet changes in LULC are generally made without regard to their biophysical implications. This review considers the potential for LULC to compound, confound, or even contradict changes expected from climate change alone. These properties give LULC the potential to be used as powerful tools capable of modifying local climate and contributing significantly to the net impact of climate change. Management practices based modifications of LULC patterns and processes could be applied strategically to increase the resilience of vulnerable ecological systems and facilitate climate adaptation. These interventions build on the traditional competencies of land management and land protection organizations and suggest that these institutions have a central role in determining the ecological impact of climate change and the development of strategies for adaptation. The practical limits to the use of LULC-based tools also suggest important inflection points between manageable and dangerous levels of climate change. [PUBLICATION ABSTRACT]