Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
50
result(s) for
"Abbott, Derek W"
Sort by:
N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis
2020
Gasdermin-D (GSDMD) in inflammasome-activated macrophages is cleaved by caspase-1 to generate N-GSDMD fragments. N-GSDMD then oligomerizes in the plasma membrane (PM) to form pores that increase membrane permeability, leading to pyroptosis and IL-1β release. In contrast, we report that although N-GSDMD is required for IL-1β secretion in NLRP3-activated human and murine neutrophils, N-GSDMD does not localize to the PM or increase PM permeability or pyroptosis. Instead, biochemical and microscopy studies reveal that N-GSDMD in neutrophils predominantly associates with azurophilic granules and LC3
+
autophagosomes. N-GSDMD trafficking to azurophilic granules causes leakage of neutrophil elastase into the cytosol, resulting in secondary cleavage of GSDMD to an alternatively cleaved N-GSDMD product. Genetic analyses using ATG7-deficient cells indicate that neutrophils secrete IL-1β via an autophagy-dependent mechanism. These findings reveal fundamental differences in GSDMD trafficking between neutrophils and macrophages that underlie neutrophil-specific functions during inflammasome activation.
In macrophages, IL-1β secretion is mediated by N-GSDMD pores in the plasma membrane (PM). Here the authors show that in neutrophils, IL-1β secretion occurs in the absence of PM pores, via autophagosomes; N-GSDMD does not traffic to PM but to azurophilic granules, thereby releasing neutrophil elastase which cleaves further N-GSDMD into alternative fragments.
Journal Article
Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity
by
Letterio, John J
,
Dorand, R Dixon
,
Myers, Jay T
in
Animals
,
B7-H1 Antigen - genetics
,
Brain cancer
2016
Cancers often evade immune surveillance by adopting peripheral tissue- tolerance mechanisms, such as the expression of programmed cell death ligand 1 (PD-L1), the inhibition of which results in potent antitumor immunity. Here, we show that cyclin-dependent kinase 5 (Cdk5), a serine-threonine kinase that is highly active in postmitotic neurons and in many cancers, allows medulloblastoma (MB) to evade immune elimination. Interferon-γ (IFN-γ)-induced PD-L1 up-regulation on MB requires Cdk5, and disruption of Cdk5 expression in a mouse model of MB results in potent CD4(+) T cell-mediated tumor rejection. Loss of Cdk5 results in persistent expression of the PD-L1 transcriptional repressors, the interferon regulatory factors IRF2 and IRF2BP2, which likely leads to reduced PD-L1 expression on tumors. Our finding highlights a central role for Cdk5 in immune checkpoint regulation by tumor cells.
Journal Article
IL-33 promotes recovery from acute colitis by inducing miR-320 to stimulate epithelial restitution and repair
2018
Defective and/or delayed wound healing has been implicated in the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease (IBD). The resolution of inflammation is particularly important in mucosal organs, such as the gut, where restoration of epithelial barrier function is critical to reestablish homeostasis with the interfacing microenvironment. Although IL-33 and its receptor ST2/ILRL1 are known to be increased and associated with IBD, studies using animal models of colitis to address the mechanism have yielded ambiguous results, suggesting both pathogenic and protective functions. Unlike those previously published studies, we focused on the functional role of IL-33/ST2 during an extended (2-wk) recovery period after initial challenge in dextran sodium sulfate (DSS)-induced colitic mice. Our results show that during acute, resolving colitis the normal function of endogenous IL-33 is protection, and the lack of either IL-33 or ST2 impedes the overall recovery process, while exogenous IL-33 administration during recovery dramatically accelerates epithelial restitution and repair, with concomitant improvement of colonic inflammation. Mechanistically, we show that IL-33 stimulates the expression of a network of microRNAs (miRs) in the Caco2 colonic intestinal epithelial cell (IEC) line, especially miR-320, which is increased by >16-fold in IECs isolated from IL-33–treated vs. vehicle-treated DSS colitic mice. Finally, IL-33–dependent in vitro proliferation and wound closure of Caco-2 IECs is significantly abrogated after specific inhibition of miR-320A. Together, our data indicate that during acute, resolving colitis, IL-33/ST2 plays a crucial role in gut mucosal healing by inducing epithelial-derived miR-320 that promotes epithelial repair/restitution and the resolution of inflammation.
Journal Article
TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation
2018
NLRP3 inflammasome plays a critical spatiotemporal role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). This study reports a mechanistic insight into noncanonical NLRP3 inflammasome activation in microglia for the effector stage of EAE. Microglia-specific deficiency of ASC (apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment [CARD] domain) attenuated T cell expansion and neutrophil recruitment during EAE pathogenesis. Mechanistically, TLR stimulation led to IRAKM-caspase-8-ASC complex formation, resulting in the activation of caspase-8 and IL-1β release in microglia. Noncanonical inflammasome-derived IL-1β produced by microglia in the CNS helped to expand the microglia population in an autocrine manner and amplified the production of inflammatory cytokines/chemokines. Furthermore, active caspase-8 was markedly increased in the microglia in the brain tissue from patients with multiple sclerosis. Taken together, our study suggests that microglia-derived IL-1β via noncanonical caspase-8-dependent inflammasome is necessary for microglia to exert their pathogenic role during CNS inflammation.
Journal Article
TH17 cells promote CNS inflammation by sensing danger signals via Mincle
2022
The C-type lectin receptor Mincle is known for its important role in innate immune cells in recognizing pathogen and damage associated molecular patterns. Here we report a T cell–intrinsic role for Mincle in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Genomic deletion of Mincle in T cells impairs TH17, but not TH1 cell-mediated EAE, in alignment with significantly higher expression of Mincle in TH17 cells than in TH1 cells. Mechanistically, dying cells release β-glucosylceramide during inflammation, which serves as natural ligand for Mincle. Ligand engagement induces activation of the ASC-NLRP3 inflammasome, which leads to Caspase8-dependent IL-1β production and consequentially TH17 cell proliferation via an autocrine regulatory loop. Chemical inhibition of β-glucosylceramide synthesis greatly reduces inflammatory CD4+ T cells in the central nervous system and inhibits EAE progression in mice. Taken together, this study indicates that sensing of danger signals by Mincle on TH17 cells plays a critical role in promoting CNS inflammation.
Mincle is a pattern recognition receptor that senses danger signals in innate immune cells. Here authors show in an experimental autoimmune encephalomyelitis mouse model that tissue damage triggers Mincle signaling on inflammatory helper T cells, leading to inflammasome-mediated IL-1β production and reinforced inflammation.
Journal Article
A rapid method for determining protein kinase phosphorylation specificity
by
Cantley, Lewis C
,
Hutti, Jessica E
,
Turk, Benjamin E
in
Amino Acid Motifs
,
Amino acids
,
Binding Sites
2004
Selection of target substrates by protein kinases is strongly influenced by the amino acid sequence surrounding the phosphoacceptor site. Identification of the preferred peptide phosphorylation motif for a given kinase permits the production of efficient peptide substrates and greatly simplifies the mapping of phosphorylation sites in protein substrates. Here we describe a combinatorial peptide library method that allows rapid generation of phosphorylation motifs for serine/threonine kinases.
Journal Article
Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor
by
Dubyak, George R.
,
Rathkey, Joseph K.
,
Shi, Wuxian
in
Animals
,
Apoptosis
,
Apoptosis Regulatory Proteins - chemistry
2018
The inflammasomes are signaling platforms that promote the activation of inflammatory caspases such as caspases-1, -4, -5, and -11. Recent studies identified gasdermin D (GSDMD) as an effector for pyroptosis downstream of the inflammasome signaling pathways. Cleavage of GSDMD by inflammatory caspases allows its N-terminal domain to associate with membrane lipids and form pores that induce pyroptotic cell death. Despite the important role of GSDMD in pyroptosis, the molecular mechanisms of GSDMD recognition and cleavage by inflammatory caspases that trigger pyroptosis are poorly understood. Here, we demonstrate that the catalytic domains of inflammatory caspases can directly bind to both the full-length GSDMD and its cleavage site peptide, FLTD. A GSDMD-derived inhibitor, N-acetyl-Phe-Leu-Thr-Asp-chloromethylketone (Ac-FLTD-CMK), inhibits GSDMD cleavage by caspases-1, -4, -5, and -11 in vitro, suppresses pyroptosis downstream of both canonical and noncanonical inflammasomes, as well as reduces IL-1β release following activation of the NLRP3 inflammasome in macrophages. By contrast, the inhibitor does not target caspase-3 or apoptotic cell death, suggesting that Ac-FLTD-CMK is a specific inhibitor for inflammatory caspases. Crystal structure of caspase-1 in complex with Ac-FLTD-CMK reveals extensive enzyme–inhibitor interactions involving both hydrogen bonds and hydrophobic contacts. Comparison with other caspase-1 structures demonstrates drastic conformational changes at the four active-site loops that assemble the catalytic groove. The present study not only contributes to our understanding of GSDMD recognition by inflammatory caspases but also reports a specific inhibitor for these caspases that can serve as a tool for investigating inflammasome signaling.
Journal Article
Dysregulated NOD2 predisposes SAMP1/YitFc mice to chronic intestinal inflammation
by
Kodani, Tomohiro
,
McDonald, Christine
,
Rodriguez-Palacios, Alexander
in
Animals
,
Bacteria
,
Biological Sciences
2013
Nucleotide-binding oligomerization domain-containing 2 (NOD2) is an intracellular receptor that plays an essential role in innate immunity as a sensor of a component of the bacterial cell wall, muramyl dipeptide (MDP). Crohn’s disease (CD)-associated NOD2 variants lead to defective innate immune responses, including decreased NF-κB activation and cytokine production. We report herein that SAMP1/YitFc (SAMP) mice, which develop spontaneous CD-like ileitis in the absence of NOD2 genetic mutations, fail to respond to MDP administration by displaying decreased innate cytokine production and dysregulated NOD2 signaling compared with parental AKR control mice. We show that, unlike in other mouse strains, in vivo administration of MDP does not prevent dextran sodium sulfate-induced colitis in SAMP mice and that the abnormal NOD2 response is specific to the hematopoietic cellular component. Moreover, we demonstrate that MDP fails to enhance intracellular bacterial killing in SAMP mice. These findings shed important light on the initiating molecular events underlying CD-like ileitis.
Journal Article
ABIN-1 regulates RIPK1 activation by linking Met1 ubiquitylation with Lys63 deubiquitylation in TNF-RSC
by
Mookhtiar, Adnan K.
,
Su, Zhenyi
,
Sun, Li
in
Activation
,
Adaptor Proteins, Signal Transducing - deficiency
,
Adaptor Proteins, Signal Transducing - genetics
2018
Ubiquitylation of the TNFR1 signalling complex (TNF-RSC) controls the activation of RIPK1, a kinase critically involved in mediating multiple TNFα-activated deleterious events. However, the molecular mechanism that coordinates different types of ubiquitylation modification to regulate the activation of RIPK1 kinase remains unclear. Here, we show that ABIN-1/NAF-1, a ubiquitin-binding protein, is recruited rapidly into TNF-RSC in a manner dependent on the Met1-ubiquitylating complex LUBAC to regulate the recruitment of A20 to control Lys63 deubiquitylation of RIPK1. ABIN-1 deficiency reduces the recruitment of A20 and licenses cells to die through necroptosis by promoting Lys63 ubiquitylation and activation of RIPK1 with TNFα stimulation under conditions that would otherwise exclusively activate apoptosis in wild-type cells. Inhibition of RIPK1 kinase and RIPK3 deficiency block the embryonic lethality of
Abin-1
–/–
mice. We propose that ABIN-1 provides a critical link between Met1 ubiquitylation mediated by the LUBAC complex and Lys63 deubiquitylation by phospho-A20 to modulate the activation of RIPK1.
Dziedzic et al. show that the ubiquitin-binding protein ABIN-1 is recruited into TNFR1 signalling complex in a manner dependent on Met1 -ubiquitinating complex LUBAC to regulate K63 de-ubiquitination to activate RIPK1.
Journal Article
The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1
2011
The deubiquitinase A20 limits excessive cytokine expression by shutting down activation of the transcription factor NF-κB. Harhaj and colleagues show that the kinase IKKα activates the A20 ubiquitin-editing complex by phosphorylating the regulatory molecule TAX1BP1.
In response to stimulation with proinflammatory cytokines, the deubiquitinase A20 inducibly interacts with the regulatory molecules TAX1BP1, Itch and RNF11 to form the A20 ubiquitin-editing complex. However, the molecular signal that coordinates the assembly of this complex has remained elusive. Here we demonstrate that TAX1BP1 was inducibly phosphorylated on Ser593 and Ser624 in response to proinflammatory stimuli. The kinase IKKα, but not IKKβ, was required for phosphorylation of TAX1BP1 and directly phosphorylated TAX1BP1 in response to stimulation with tumor necrosis factor (TNF) or interleukin 1 (IL-1). TAX1BP1 phosphorylation was pivotal for cytokine-dependent interactions among TAX1BP1, A20, Itch and RNF11 and downregulation of signaling by the transcription factor NF-κB. IKKα therefore serves a key role in the negative feedback of NF-κB canonical signaling by orchestrating assembly of the A20 ubiquitin-editing complex to limit inflammatory gene activation.
Journal Article