Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
84
result(s) for
"Abdi, Salahadin"
Sort by:
Ketamine Use for Cancer and Chronic Pain Management
2021
Ketamine, an N-methyl-D-aspartate receptor antagonist, is widely known as a dissociative anesthetic and phencyclidine derivative. Due to an undesirable adverse event profile when used as an anesthetic it had widely fallen out of human use in favor of more modern agents. However, it has recently been explored for several other indications such as treatment resistant depression and chronic pain. Several recent studies and case reports compiled here show that ketamine is an effective analgesic in chronic pain conditions including cancer-related neuropathic pain. Of special interest is ketamine’s opioid sparing ability by counteracting the central nervous system sensitization seen in opioid induced hyperalgesia. Furthermore, at the sub-anesthetic concentrations used for analgesia ketamine’s safety and adverse event profiles are much improved. In this article, we review both the basic science and clinical evidence regarding ketamine’s utility in chronic pain conditions as well as potential adverse events.
Journal Article
Circadian regulation of chemotherapy-induced peripheral neuropathic pain and the underlying transcriptomic landscape
2020
Growing evidence demonstrates circadian rhythms of pain hypersensitivity in various chronic disorders. In chemotherapy-induced peripheral neuropathy (CIPN), agents such as paclitaxel are known to elicit chronic neuropathic pain in cancer patients and seriously compromise their quality of life. Here, we report that the mechanical threshold for allodynia in paclitaxel-treated rats exhibited a robust circadian oscillation, reaching the nadir during the daytime (inactive phase). Using Per2::LucSV circadian reporter mice expressing a PER2::LUC fusion protein, we isolated dorsal root ganglia (DRG), the primary sensory cell body for peripheral nerve injury generated hypersensitivity, and monitored ex vivo reporter bioluminescence. We observed strong circadian reporter rhythms in DRG neurons which are highly entrainable by external cues. Paclitaxel treatment significantly lengthened DRG circadian periods, with little effects on the amplitude of oscillation. We further observed the core protein BMAL1 and PER2 in DRG neurons and satellite cells. Using DRG and dorsal horn (DH; another key structure for CIPN pain response) tissues from vehicle and paclitaxel treated rats, we performed RNA-sequencing and identified diurnal expression of core clock genes as well as clock-controlled genes in both sites. Interestingly, 20.1% and 30.4% of diurnal differentially expressed genes (DEGs) overlapped with paclitaxel-induced DEGs in the DRG and the DH respectively. In contrast, paclitaxel-induced DEGs displayed only a modest overlap between daytime and nighttime (
Zeitgeber
Time 8 and 20). Furthermore, paclitaxel treatment induced de novo diurnal DEGs, suggesting reciprocal interaction of circadian rhythms and chemotherapy. Our study therefore demonstrates a circadian oscillation of CIPN and its underlying transcriptomic landscape.
Journal Article
Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia
2019
Chemotherapy-induced peripheral neuropathy (CIPN) adversely impacts quality of life and a challenge to treat with existing drugs used for neuropathic pain. Losartan, an angiotensin II type 1 receptor (AT1R) antagonist widely used to treat hypertension, has been reported to have analgesic effects in several pain models. In this study, we assessed losartan’s analgesic effect on paclitaxel-induced neuropathic pain (PINP) in rats and its mechanism of action in dorsal root ganglion (DRG). Rats received intraperitoneal injections of 2 mg/kg paclitaxel on days 0, 2, 4, and 6 and received single or multiple intraperitoneal injections of losartan potassium dissolved in phosphate-buffered saline at various times. The mechanical thresholds, protein levels of inflammatory cytokines, and cellular location of AT1R and interleukin 1β (IL-1β) in the DRG were assessed with behavioral testing, Western blotting, and immunohistochemistry, respectively. Data were analyzed by two-way repeated-measures analysis of variance for the behavioral test or the Mann-Whitney
U
test for the Western blot analysis and immunohistochemistry. Single and multiple injections of losartan ameliorated PINP, and losartan delayed the development of PINP. Paclitaxel significantly increased, and losartan subsequently decreased, the expression levels of inflammatory cytokines, including IL-1β and tumor necrosis factor α (TNF-α), in the lumbar DRG. AT1R and IL-1β were expressed in both neurons and satellite cells and losartan decreased the intensity of IL-1β in the DRG. Losartan ameliorates PINP by decreasing inflammatory cytokines including IL-1β and TNF-α in the DRG. Our findings provide a new or add-on therapy for CIPN patients.
Journal Article
Exacerbation of paclitaxel-induced neuropathic pain behaviors in breast tumor–bearing mice
2025
Background:
Chronic pain and cancer interact bidirectionally, with pain enhancing sensory peptides and potentially promoting tumor growth. Despite this, most chemotherapy-induced neuropathic pain (CIPN) studies overlook the contribution of cancer itself to neuropathy, focusing instead on chemotherapy-induced mechanisms. Animal models of chemotherapy-induced neuropathic pain (CINP) have been developed by injecting chemotherapeutic drugs such as paclitaxel into normal animals without cancer. This study aimed to develop a new model in mouse mammary tumor virus–polyomavirus middle T antigen (MMTV-PyMT) mice, a widely used breast cancer model with normal immune function.
Results:
The percentage of positive response (PPR) of paclitaxel-injected MMTV-PyMT mice increased (about 20%; baseline, 10%) on day 4, reached the highest levels (50%–60%) on days 6–9, and then plateaued by day 29. In comparison, the PPR of paclitaxel-injected C57BL/6 was less than 10% on days 0–6, was about 40% on day 9, and then plateaued by day 29. Breast tumor–bearing mice exhibited an earlier onset and greater severity of paclitaxel-induced pain behaviors than tumor-free C57BL/6 mice. Systemic LGK-974 ameliorated paclitaxel-induced pain behaviors in MMTV-PyMT mice. Active β-catenin was detected in neurons and satellite cells of the dorsal root ganglia.
Conclusions:
Paclitaxel-induced neuropathic pain model in breast tumor–bearing female MMTV-PyMT mice may be a useful animal model for investigating the analgesic effects and underlying mechanisms for CINP in breast cancer patients as well as the interplay between CINP development and cancer progression.
Journal Article
Nurse-Administered Auricular Point Acupressure for Cancer-Related Pain
2023
Purpose:
The study aimed to (1) examine the feasibility of providing a training course on auricular point acupressure (APA) for clinical oncology nurses to integrate APA into real-world nursing care settings, and (2) examine the effectiveness of APA on cancer-related pain (CRP) under usual inpatient oncology ward conditions.
Methods:
This was a 2-phase feasibility study. Phase 1, an in-person, 8 hour training program was provided to oncology nurses. Phase 2, a prospective and feasibility study was conducted to evaluate the integration of APA into nursing care activities to manage CRP. Oncology patients were included if their pain was rated at ≥4 on a 0 to 10 numeric rating scale in the past 24 hours. Patients received 1 APA treatment administered by the nurses and were instructed to stimulate the points for 3 days. Study outcomes (pain intensity, fatigue, and sleep disturbance), pain medication use, and APA practice were measured by a phone survey daily.
Results:
Ten oncology nurses received APA training in phase 1. APA had been added to the hospital’s electronic health records (EHRs) as a pain treatment. In phase 2, 33 oncology patients received APA treatment with a 100% adherence rate (pressing the seeds 3 times per day, 3 minutes per time based on the suggestion). The side effects of APA were minimal (~8%-12% felt tenderness on the ear). After 3 days of APA, patients reported 38% pain relief, 39% less fatigue, and 45% improvement in sleep disturbance; 24% reduced any type of pain medication use and 19% reduced opioid use (10 mg opioids using milligram morphine equivalent). The major barrier to integrating APA into routine nursing practice was time management (how to include APA in a daily workflow).
Conclusion:
It is feasible to provide 8-hour training to oncology nurses for mastering APA skill and then integrating APA into their daily nursing care for patients with CRP. Based on the promising findings (decreased pain, improved fatigue and sleep disturbance, and less opioid use), the next step is to conduct a randomized clinical trial with a larger sample to confirm the efficacy of APA for oncology nurses to treat CRP in real-world practice.
ClinicalTrial.gov identifier number: NCT04040140.
Journal Article
Building an interdisciplinary pain medicine and palliative care program in Ethiopia
by
Abdi, Salahadin
,
Dmitrovsky, Ethan
in
Analgesics, Opioid - supply & distribution
,
Cancer therapies
,
Chronic Pain - drug therapy
2020
With help from the American Cancer Society’s “Treat the Pain” initiative, cancer clinicians in African countries can acquire pain medicine for their patients, including opioid analgesics [5]. [...]the Federal Ministry of Health of Ethiopia seeks to develop a workforce versed in different areas of cancer care, including pain management and palliative care. To begin to respond to this urgent need, a pain medicine - palliative care and hospice training pilot program was launched by Dr Salahadin Abdi at the Ayder Specialty Hospital in Mekelle.
Journal Article
Blockers of Wnt3a, Wnt10a, or β-Catenin Prevent Chemotherapy-Induced Neuropathic Pain In Vivo
by
Kim, Min-Sik
,
Jun, Sohee
,
Park, Jae-Il
in
Animals
,
beta Catenin - antagonists & inhibitors
,
Biomedical and Life Sciences
2021
Although chemotherapy is a key cancer treatment, many chemotherapeutic drugs produce chronic neuropathic pain, called chemotherapy-induced neuropathic pain (CINP), which is a dose-limiting adverse effect. To date, there is no medicine that prevents CINP in cancer patients and survivors. We determined whether blockers of the canonical Wnt signaling pathway prevent CINP. Neuropathic pain was induced by intraperitoneal injection of paclitaxel (PAC) on four alternate days in male Sprague-Dawley rats or male Axin2-LacZ knock-in mice. XAV-939, LGK-974, and iCRT14, Wnt/β-catenin blockers, were administered intraperitoneally as a single or multiple doses before or after injury. Mechanical allodynia, phosphoproteome profiling, Wnt ligands, and inflammatory mediators were measured by von Frey filament, phosphoproteomics, reverse transcription-polymerase chain reaction, and Western blot analysis. Localization of β-catenin was determined by immunohistochemical analysis in the dorsal root ganglia (DRGs) in rats and human. Our phosphoproteome profiling of CINP rats revealed significant phosphorylation changes in Wnt signaling components. Importantly, repeated systemic injections of XAV-939 or LGK-974 prevented the development of CINP in rats. In addition, XAV-939, LGK-974, and iCRT14 ameliorated CINP. PAC increased Wnt3a and Wnt10a, activated β-catenin in DRG, and increased monocyte chemoattractant protein-1 and interleukin-1β in DRG. PAC also upregulated rAxin2 in mice. Furthermore, β-catenin was expressed in neurons, including calcitonin gene–related protein-expressing neurons and satellite cells in rat and human DRG. In conclusion, chemotherapy increases Wnt3a, Wnt10a, and β-catenin in DRG and their pharmacological blockers prevent and ameliorate CINP, suggesting a target for the prevention and treatment of CINP.
Journal Article
A Novel Tool for the Assessment of Pain: Validation in Low Back Pain
2009
Adequate pain assessment is critical for evaluating the efficacy of analgesic treatment in clinical practice and during the development of new therapies. Yet the currently used scores of global pain intensity fail to reflect the diversity of pain manifestations and the complexity of underlying biological mechanisms. We have developed a tool for a standardized assessment of pain-related symptoms and signs that differentiates pain phenotypes independent of etiology.
Using a structured interview (16 questions) and a standardized bedside examination (23 tests), we prospectively assessed symptoms and signs in 130 patients with peripheral neuropathic pain caused by diabetic polyneuropathy, postherpetic neuralgia, or radicular low back pain (LBP), and in 57 patients with non-neuropathic (axial) LBP. A hierarchical cluster analysis revealed distinct association patterns of symptoms and signs (pain subtypes) that characterized six subgroups of patients with neuropathic pain and two subgroups of patients with non-neuropathic pain. Using a classification tree analysis, we identified the most discriminatory assessment items for the identification of pain subtypes. We combined these six interview questions and ten physical tests in a pain assessment tool that we named Standardized Evaluation of Pain (StEP). We validated StEP for the distinction between radicular and axial LBP in an independent group of 137 patients. StEP identified patients with radicular pain with high sensitivity (92%; 95% confidence interval [CI] 83%-97%) and specificity (97%; 95% CI 89%-100%). The diagnostic accuracy of StEP exceeded that of a dedicated screening tool for neuropathic pain and spinal magnetic resonance imaging. In addition, we were able to reproduce subtypes of radicular and axial LBP, underscoring the utility of StEP for discerning distinct constellations of symptoms and signs.
We present a novel method of identifying pain subtypes that we believe reflect underlying pain mechanisms. We demonstrate that this new approach to pain assessment helps separate radicular from axial back pain. Beyond diagnostic utility, a standardized differentiation of pain subtypes that is independent of disease etiology may offer a unique opportunity to improve targeted analgesic treatment.
Journal Article
Rolipram, a Selective Phosphodiesterase 4 Inhibitor, Ameliorates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain through Inhibition of Inflammatory Cytokines in the Dorsal Root Ganglion
by
Oh, Elizabeth
,
Hwang, Seon-Hee
,
Abdi, Salahadin
in
Anesthesia
,
Antineoplastic drugs
,
Catheters
2017
Chemotherapy-induced neuropathic pain is a significant side effect of chemotherapeutic agents and is the most common reason for stopping chemotherapy. The aim of the present study was to find the major site and mechanisms of action by which rolipram, a selective phosphodiesterase-4 inhibitor, alleviates paclitaxel-induced neuropathic pain. Chemotherapy-induced neuropathic pain was induced in adult male Sprague-Dawley rats by intraperitoneal injection of paclitaxel on four alternate days. Rolipram was administered systemically or locally into the lumbar spinal cord, L5 dorsal root ganglion, sciatic nerve, or skin nerve terminal. The mechanical threshold, the protein level of several inflammatory cytokines, and the cellular locations of phosphodiesterase-4 and interleukin-1β in the dorsal root ganglion were measured by using behavioral testing, Western blotting, and immunohistochemistry, respectively. The local administration (0.03-mg) of rolipram in the L5 dorsal root ganglion ameliorated paclitaxel-induced pain behavior more effectively than did local administration in the other sites. Paclitaxel significantly increased the expression of inflammatory cytokines including tumor necrosis factor-α (2.2 times) and interleukin-1β (2.7 times) in the lumbar dorsal root ganglion, and rolipram significantly decreased it. In addition, phosphodiesterase-4 and interleukin-1β were expressed in the dorsal root ganglion neurons and satellite cells and paclitaxel significantly increased the intensity of interleukin-1β (2 times) and rolipram significantly decreased it. These results suggest that the major site of action of rolipram on paclitaxel-induced neuropathic pain in rats was the dorsal root ganglion. Rolipram decreased the expression of inflammatory cytokines in the dorsal root ganglion. Thus, phosphodiesterase-4 inhibitors may ameliorate chemotherapy-induced neuropathic pain by decreasing expression of inflammatory cytokines in the dorsal root ganglion.
Journal Article
Scrambler Therapy for the management of chronic pain
by
Sparadeo, Frank
,
Shelerud, Randy
,
Beutler, Andreas
in
Cancer
,
Care and treatment
,
Case studies
2016
Purpose
Chronic pain is a widespread and debilitating condition, encountered by physicians in a variety of practice settings. Although many pharmacologic and behavioral strategies exist for the management of this condition, treatment is often unsatisfactory. Scrambler Therapy is a novel, non-invasive pain modifying technique that utilizes trans-cutaneous electrical stimulation of pain fibers with the intent of re-organizing maladaptive signaling pathways. This review was conducted to further evaluate what is known regarding the mechanisms and mechanics of Scrambler Therapy and to investigate the preliminary data pertaining to the efficacy of this treatment modality.
Methods
The PubMed/Medline, SCOPUS, EMBASE, and Google Scholar databases were searched for all articles published on Scrambler Therapy prior to November 2015. All case studies and clinical trials were evaluated and reported in a descriptive manner.
Results
To date, 20 reports, of varying scientific quality, have been published regarding this device; all but one small study, published only as an abstract, provided results that appear positive.
Conclusion
The positive findings from preliminary studies with Scrambler Therapy support that this device provides benefit for patients with refractory pain syndromes. Larger, randomized studies are required to further evaluate the efficacy of this approach.
Journal Article