Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,578 result(s) for "Abdulsalam, A"
Sort by:
Effects of Synthetic Ligustrazine-Based Chalcone Derivatives on Trypanosoma brucei brucei and Leishmania spp. Promastigotes
Current medication therapy for leishmaniasis and trypanosomiasis remains a major challenge due to its limited efficacy, significant adverse effects, and inaccessibility. Consequently, locating affordable and effective medications is a pressing concern. Because of their easy-to-understand structure and high functionalization potential, chalcones are promising candidates for use as bioactive agents. Thirteen synthetic ligustrazine-containing chalcones were evaluated for their ability to inhibit the growth of leishmaniasis and trypanosomiasis in etiologic agents. The tetramethylpyrazine (TMP) analogue ligustrazine was chosen as the central moiety for the synthesis of these chalcone compounds. The most effective compound (EC50 = 2.59 µM) was the chalcone derivative 2c, which featured a pyrazin-2-yl amino on the ketone ring and a methyl substitution. Multiple actions were observed for certain derivatives, including 1c, 2a–c, 4b, and 5b, against all strains tested. Eflornithine served as a positive control, and three ligustrazine-based chalcone derivatives, including 1c, 2c, and 4b, had a higher relative potency. Compounds 1c and 2c are particularly efficacious; even more potent than the positive control, they are therefore promising candidates for the treatment of trypanosomiasis and leishmaniasis.
Biomechanical analysis of porous and dense dental implant-supported bridges in healthy and osteoporotic bones
Despite the high success rate of crown bridge dental implants, peri-implant bone resorption remains a persistent major biomechanical issue. This study examines the impact of the implant’s Young’s modulus, implantation technique, and loading conditions on bone remodeling in the region of interest (ROI) for varying bone qualities. Three-dimensional finite element models of three-unit bridge crowns (TUB), implants, and cancellous and cortical bones were constructed using SolidWorks software. Four implantation scenarios, two bone health conditions (healthy and weak bone), and dense and effective porous implants were simulated under two loading conditions (200 N and gradually decreasing 100 N, 80 N, and 40 N), employing Abaqus software, for 16 cases (n = 16). A user’s subroutine was programmed using Python to estimate the iterative changes (46 simulations of each case) in bone density at peri-implant bone. The simulated results demonstrated that effective porous implants outperformed and showed higher Young’s moduli in the ROI compared to the dense implants when a single implant was implanted. However, when two implants were inserted simultaneously, the effective porous implant outperformed in the case of healthy bone only.
Exosomes combined with extra virgin olive oil reduces lipogenesis, oxidative stress, and inflammation in non-alcoholic fatty liver disease model
In response to high-fat-diet, excessive lipid accumulation in the liver results in chronic damage and inflammation. Olive oil has been studied for its health beneficial effects in hyperlipidemia (mainly has lipids lowering and antioxidative potential) while mesenchymal stem cells derived exosomes (MSCs-Exo) are investigated mainly for their tissue regenerative and anti-inflammatory potential. In the present study we aimed to combine the beneficial effects of Extra Virgin Olive Oil (EVOO) and MSCs-Exo on a model of high-fat-diet induced Non-Alcoholic Fatty Liver Disease (NAFLD, which still lacks effective treatment protocols) and detect whether an improved response could be achieved from this combination. Sprague Dawley rats (n = 40) were randomly assigned to five groups (n = 8/group), control, hyperlipidemia (HL), HL+EVOO, HL + Exo and HL + Exo+EVOO. Our results show that better antihyperlipidemic effects were obtained in the combined group receiving Exo+EVOO treatment more than using EVOO or MSCs-Exo alone. This was achieved by improving plasma lipids profile, improving antioxidants stores and reducing lipid peroxidation, no change in liver function parameters which was confirmed also by the histopathological examination of the liver where a preserved normal liver architecture. To further elucidate the mechanisms involved, the gene expression levels of lipogenesis (SREBP-1c, ACC, FAS, GPAT3, SCD1, and FSP27), inflammation (IL-1β, TNF-α, IL-6, IL-18, CCL20, and NF-κB), lipid peroxidation (CPT1A, ACOX1) and PPAR pathway (PPARα, PPARγ) were all normalized. This indicates that combined Exo+EVOO harnessed the benefits of both, and this was much better in treating hyperlipidemia and NAFLD and warrants prospects for approaches that could be adopted to treat NAFLD.
Green Synthesis of Titanium Dioxide Nanoparticles Using Ocimum sanctum Leaf Extract: In Vitro Characterization and Its Healing Efficacy in Diabetic Wounds
Diabetes mellitus is one of the most prevalent metabolic disorders characterized by hyperglycemia due to impaired glucose metabolism. Overproduction of free radicals due to chronic hyperglycemia may cause oxidative stress, which delays wound healing in diabetic conditions. For people with diabetes, this impeded wound healing is one of the predominant reasons for mortality and morbidity. The study aimed to develop an Ocimum sanctum leaf extract-mediated green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) and further incorporate them into 2% chitosan (CS) gel for diabetic wound healing. UV-visible spectrum analysis recorded the sharp peak at 235 and 320 nm, and this was the preliminary sign for the biosynthesis of TiO2 NPs. The FTIR analysis was used to perform a qualitative validation of the biosynthesized TiO2 nanoparticles. XRD analysis indicated the crystallinity of TiO2 NPs in anatase form. Microscopic investigation revealed that TiO2 NPs were spherical and polygonal in shape, with sizes ranging from 75 to 123 nm. The EDX analysis of green synthesized NPs showed the presence of TiO2 NPs, demonstrating the peak of titanium ion and oxygen. The hydrodynamic diameter and polydispersity index (PDI) of the TiO2 NPs were found to be 130.3 nm and 0.237, respectively. The developed TiO2 NPs containing CS gel exhibited the desired thixotropic properties with pseudoplastic behavior. In vivo wound healing studies and histopathological investigations of healed wounds demonstrated the excellent wound-healing efficacy of TiO2 NPs containing CS gel in diabetic rats.
Experimental investigation and prediction of the flexural properties of FDM printed carbon fiber reinforced polyamide parts using optimized RSM and ANN models
The application of additive manufacturing technologies for producing parts from polymer composite materials has gained significant attention due to the ability to create fully functional components that leverage the advantages of both polymer matrices and fiber reinforcements while maintaining the benefits of additive technology. Polymer composites are among the most advanced and widely used composite materials, offering high strength and stiffness with low mass and variable resistance to different media. This study aims to experimentally investigate the impact of selected process parameters, namely, wall thickness, raster angle, printing temperature, and build plate temperature, on the flexural properties of carbon fiber reinforced polyamide (CFrPA) fused deposition modeling (FDM) printed samples, as per ISO 178 standards. Additionally, regression and artificial neural network (ANN) models have been developed to predict these flexural properties. ANN models are developed for both normal and augmented inputs, with the architecture and hyperparameters optimized using random search technique. Response surface methodology (RSM), which is based on face centered composite design, is employed to analyze the effects of process parameters. The RSM results indicate that the raster angle and build plate temperature have the greatest impact on the flexural properties, resulting in an increase of 51% in the flexural modulus. The performance metrics of the optimized RSM and ANN models, characterized by low MSE, RMSE, MAE, and MAPE values and high R 2 values, suggest that these models provide highly accurate and reliable predictions of flexural strength and modulus for the CFrPA material. The study revealed that ANN models with augmented inputs outperform both RSM models and ANN models with normal inputs in predicting these properties.
3D Printed Pharmaceutical Systems for Personalized Treatment in Metabolic Syndrome
The current healthcare system is widely based on the concept of “one size fit for all”, which emphasizes treating a disease by prescribing the same drug to all patients with equivalent doses and dosing frequency. This medical treatment scenario has shown varied responses with either no or weak pharmacological effects and exaggerated adverse reactions preceded by more patient complications. The hitches to the concept of “one size fits all” have devoted the attention of many researchers to unlocking the concept of personalized medicine (PM). PM delivers customized therapy with the highest safety margin for an individual patient’s needs. PM has the potential to revolutionize the current healthcare system and pave the way to alter drug choices and doses according to a patient’s clinical responses, providing physicians with the best treatment outcomes. The 3D printing techniques is a solid-form fabrication method whereby successive layers of materials based on computer-aided designs were deposited to form 3D structures. The 3D printed formulation achieves PM goals by delivering the desired dose according to patient needs and drug release profile to achieve a patient’s personal therapeutic and nutritional needs. This pre-designed drug release profile attains optimum absorption and distribution, exhibiting maximum efficacy and safety profiles. This review aims to focus on the role of the 3D printing technique as a promising tool to design PM in metabolic syndrome (MS).
Microwave-Treated Physically Cross-Linked Sodium Alginate and Sodium Carboxymethyl Cellulose Blend Polymer Film for Open Incision Wound Healing in Diabetic Animals—A Novel Perspective for Skin Tissue Regeneration Application
This study aimed at developing the microwave-treated, physically cross-linked polymer blend film, optimizing the microwave treatment time, and testing for physicochemical attributes and wound healing potential in diabetic animals. Microwave-treated and untreated films were prepared by the solution casting method and characterized for various attributes required by a wound healing platform. The optimized formulation was tested for skin regeneration potential in the diabetes-induced open-incision animal model. The results indicated that the optimized polymer film formulation (MB-3) has significantly enhanced physicochemical properties such as high moisture adsorption (154.6 ± 4.23%), decreased the water vapor transmission rate (WVTR) value of (53.0 ± 2.8 g/m2/h) and water vapor permeability (WVP) value (1.74 ± 0.08 g mm/h/m2), delayed erosion (18.69 ± 4.74%), high water uptake, smooth and homogenous surface morphology, higher tensile strength (56.84 ± 1.19 MPa), and increased glass transition temperature and enthalpy (through polymer hydrophilic functional groups depicting efficient cross-linking). The in vivo data on day 16 of post-wounding indicated that the wound healing occurred faster with significantly increased percent re-epithelialization and enhanced collagen deposition with optimized MB-3 film application compared with the untreated group. The study concluded that the microwave-treated polymer blend films have sufficiently enhanced physical properties, making them an effective candidate for ameliorating the diabetic wound healing process and hastening skin tissue regeneration.
Recent Progress in Chitosan-Based Nanomedicine for Its Ocular Application in Glaucoma
Glaucoma is a degenerative, chronic ocular disease that causes irreversible vision loss. The major symptom of glaucoma is high intraocular pressure, which happens when the flow of aqueous humor between the front and back of the eye is blocked. Glaucoma therapy is challenging because of the low bioavailability of drugs from conventional ocular drug delivery systems such as eye drops, ointments, and gels. The low bioavailability of antiglaucoma agents could be due to the precorneal and corneal barriers as well as the low biopharmaceutical attributes of the drugs. These limitations can be overcome by employing nanoparticulate drug delivery systems. Over the last decade, there has been a lot of interest in chitosan-based nanoparticulate systems to overcome the limitations (such as poor residence time, low corneal permeability, etc.) associated with conventional ocular pharmaceutical products. Therefore, the main aim of the present manuscript is to review the recent research work involving the chitosan-based nanoparticulate system to treat glaucoma. It discusses the significance of the chitosan-based nanoparticulate system, which provides mucoadhesion to improve the residence time of drugs and their ocular bioavailability. Furthermore, different types of chitosan-based nanoparticulate systems are also discussed, namely nanoparticles of chitosan core only, nanoparticles coated with chitosan, and hybrid nanoparticles of chitosan. The manuscript also provides a critical analysis of contemporary research related to the impact of this chitosan-based nanomedicine on the corneal permeability, ocular bioavailability, and therapeutic performance of loaded antiglaucoma agents.
Investigation and Prediction of Tensile, Flexural, and Compressive Properties of Tough PLA Material Using Definitive Screening Design
The material extrusion fused deposition modeling (FDM) technique has become a widely used technique that enables the production of complex parts for various applications. To overcome limitations of PLA material such as low impact toughness, commercially available materials such as UltiMaker Tough PLA were produced to improve the parent PLA material that can be widely applied in many engineering applications. In this study, 3D-printed parts (test specimens) considering six different printing parameters (i.e., layer height, wall thickness, infill density, build plate temperature, printing speed, and printing temperature) are experimentally investigated to understand their impact on the mechanical properties of Tough PLA material. Three different standardized tests of tensile, flexural, and compressive properties were conducted to determine the maximum force and Young’s modulus. These six properties were used as responses in a design of experiment, definitive screening design (DSD), to build six regression models. Analysis of variance (ANOVA) is performed to evaluate the effects of each of the six printing parameters on Tough PLA mechanical properties. It is shown that all regression models are statistically significant (p<0.05) with high values of adjusted and predicted R2. Conducted confirmation tests resulted in low relative errors between experimental and predicted data, indicating that the developed models are adequately accurate and reliable for the prediction of tensile, flexural, and compressive properties of Tough PLA material.