Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
36
result(s) for
"Abidin, Syafiq Asnawi Zainal"
Sort by:
A scaffolded approach to unearth potential antibacterial components from epicarp of Malaysian Nephelium lappaceum L
2021
The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (
Nephelium lappaceum L.
) against six pathogens namely,
Bacillus subtilis
, methicillin-resistant
Staphylococcus aureus
(MRSA),
Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae
and
Salmonella enterica
. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC–MS and GC–MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of
P. aeruginosa
and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
Journal Article
Antiviral Activities of Streptomyces KSF 103 Methanolic Extracts against Dengue Virus Type-2
by
Zainal Abidin, Syafiq-Asnawi
,
Khairat, Jasmine-Elanie
,
Azman, Adzzie-Shazleen
in
Adsorption
,
Analgesics
,
Antiviral activity
2023
Dengue has long been a serious health burden to the global community, especially for those living in the tropics. Despite the availability of vaccines, effective treatment for the infection is still needed and currently remains absent. In the present study, the antiviral properties of the Streptomyces sp. KSF 103 methanolic extract (Streptomyces KSF 103 ME), which consists of a number of potential antiviral compounds, were investigated against dengue virus serotype 2 (DENV-2). The effects of this extract against DENV-2 replication were determined using the quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Findings from the study suggested that the Streptomyces KSF 103 ME showed maximum inhibitory properties toward the virus during the virus entry stage at concentrations of more than 12.5 µg/mL. Minimal antiviral activities were observed at other virus replication stages; adsorption (42% reduction at 50 µg/mL), post-adsorption (67.6% reduction at 50 µg/mL), prophylactic treatment (68.4% and 87.7% reductions at 50 µg/mL and 25 µg/mL, respectively), and direct virucidal assay (48% and 56.8% reductions at 50 µg/mL and 25 µg/mL, respectively). The Streptomyces KSF 103 ME inhibited dengue virus replication with a 50% inhibitory concentration (IC50) value of 20.3 µg/mL and an International System of Units (SI) value of 38.9. The Streptomyces KSF 103 ME showed potent antiviral properties against dengue virus (DENV) during the entry stage. Further studies will be needed to deduce the antiviral mechanisms of the Streptomyces KSF 103 ME against DENV.
Journal Article
Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer
by
Sudhesh Dev, Sareshma
,
Naidu, Rakesh
,
Othman, Iekhsan
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Antineoplastic drugs
2021
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo . This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Journal Article
The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer
2021
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Journal Article
Potential economic and clinical implications of improving access to snake antivenom in five ASEAN countries: A cost-effectiveness analysis
by
Patikorn, Chanthawat
,
Taychakhoonavudh, Suthira
,
Ismail, Ahmad Khaldun
in
Access
,
Amputation
,
Animals
2022
Despite domestic production of antivenoms in the Association of Southeast Asian Nations (ASEAN) countries, not all victims with snakebite envenomings indicated for antivenom received the appropriate or adequate effective dose of antivenom due to insufficient supply and inadequate access to antivenoms. We aimed to conduct a cost-effectiveness analysis to project the potential economic and clinical impact of improving access to antivenoms when all snakebite envenomings in ASEAN countries were hypothetically treated with geographically appropriate antivenoms.
Using a decision analytic model with input parameters from published literature, local data, and expert opinion, we projected the impact of \"full access\" (100%) to antivenom, compared to \"current access\" in five most impacted ASEAN countries, including Indonesia (10%), Philippines (26%), Vietnam (37%), Lao PDR (4%), and Myanmar (64%), from a societal perspective with a lifetime time horizon. Sensitivity analyses were performed.
In base-case analyses, full access compared to current access to snake antivenom in the five countries resulted in a total of 9,362 deaths averted (-59%), 230,075 disability-adjusted life years (DALYs) averted (-59%), and cost savings of 1.3 billion USD (-53%). Incremental cost-effectiveness ratios (ICERs) of improving access to antivenom found higher outcomes but lower costs in all countries. Probabilistic sensitivity analyses of 1,000 iterations found that 98.1-100% of ICERs were cost-saving.
Improving access to snake antivenom will result in cost-saving for ASEAN countries. Our findings emphasized the importance of further strengthening regional cooperation, investment, and funding to improve the situation of snakebite victims in ASEAN countries.
Journal Article
Estimating economic and disease burden of snakebite in ASEAN countries using a decision analytic model
by
Vasaruchapong, Taksa
,
Taychakhoonavudh, Suthira
,
Tiglao, Patrick Joseph G.
in
Amputation
,
Antivenins - therapeutic use
,
Antivenom
2022
Understanding the burden of snakebite is crucial for developing evidence-informed strategies to pursue the goal set by the World Health Organization to halve morbidity and mortality of snakebite by 2030. However, there was no such information in the Association of Southeast Asian Nations (ASEAN) countries.
A decision analytic model was developed to estimate annual burden of snakebite in seven countries, including Malaysia, Thailand, Indonesia, Philippines, Vietnam, Lao PDR, and Myanmar. Country-specific input parameters were sought from published literature, country's Ministry of Health, local data, and expert opinion. Economic burden was estimated from the societal perspective. Costs were expressed in 2019 US Dollars (USD). Disease burden was estimated as disability-adjusted life years (DALYs). Probabilistic sensitivity analysis was performed to estimate a 95% credible interval (CrI).
We estimated that annually there were 242,648 snakebite victims (95%CrI 209,810-291,023) of which 15,909 (95%CrI 7,592-33,949) were dead and 954 (95%CrI 383-1,797) were amputated. We estimated that 161,835 snakebite victims (69% of victims who were indicated for antivenom treatment) were not treated with antivenom. Annual disease burden of snakebite was estimated at 391,979 DALYs (95%CrI 187,261-836,559 DALYs) with total costs of 2.5 billion USD (95%CrI 1.2-5.4 billion USD) that were equivalent to 0.09% (95%CrI 0.04-0.20%) of the region's gross domestic product. >95% of the estimated burdens were attributed to premature deaths.
The estimated high burden of snakebite in ASEAN was demonstrated despite the availability of domestically produced antivenoms. Most burdens were attributed to premature deaths from snakebite envenoming which suggested that the remarkably high burden of snakebite could be averted. We emphasized the importance of funding research to perform a comprehensive data collection on epidemiological and economic burden of snakebite to eventually reveal the true burden of snakebite in ASEAN and inform development of strategies to tackle the problem of snakebite.
Journal Article
Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism
by
Naidu, Rakesh
,
Othman, Iekhsan
,
Zainal Abidin, Syafiq Asnawi
in
Adenosine triphosphate
,
Apoptosis
,
Cancer
2020
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, with a high mortality rate globally. The pathophysiology of CRC is mainly initiated by alteration in gene expression, leading to dysregulation in multiple signalling pathways and cellular processes. Metabolic reprogramming is one of the important cancer hallmarks in CRC, which involves the adaptive changes in tumour cell metabolism to sustain the high energy requirements for rapid cell proliferation. There are several mechanisms in the metabolic reprogramming of cancer cells, such as aerobic glycolysis, oxidative phosphorylation, lactate and fatty acids metabolism. MicroRNAs (miRNAs) are a class of non-coding RNAs that are responsible for post-transcriptional regulation of gene expression. Differential expression of miRNAs has been shown to play an important role in different aspects of tumorigenesis, such as proliferation, apoptosis, and drug resistance, as well as metabolic reprogramming. Increasing evidence also reports that miRNAs could function as potential regulators of metabolic reprogramming in CRC cells. This review provides an insight into the role of different miRNAs in regulating the metabolism of CRC cells as well as to discuss the potential role of miRNAs as biomarkers or therapeutic targets in CRC tumour metabolism.
Journal Article
Malaysian Cobra Venom: A Potential Source of Anti-Cancer Therapeutic Agents
2019
Cancer is a deadly disease and there is an urgent need for the development of effective and safe therapeutic agents to treat it. Snake venom is a complex mixture of bioactive proteins that represents an attractive source of novel and naturally-derived anticancer agents. Malaysia is one of the world’s most biodiverse countries and is home to various venomous snake species, including cobras. Naja kaouthia, Naja sumatrana, and Ophiophagus hannah are three of the most common cobra species in Malaysia and are of medical importance. Over the past decades, snake venom has been identified as a potential source of therapeutic agents, including anti-cancer agents. This present review highlights the potential anticancer activity of the venom and purified venom protein of N. kaouthia, N. sumatrana, and O. hannah. In conclusion, this review highlights the important role of the venom from Malaysian cobras as an important resource that researchers can exploit to further investigate its potential in cancer treatment.
Journal Article
Evaluation of the Phytochemical, Antioxidant, Enzyme Inhibition, and Wound Healing Potential of Calotropis gigantea (L.) Dryand: A Source of a Bioactive Medicinal Product
by
Sridharagatta, Swathi
,
Alafnan, Ahmed
,
Khurshid, Umair
in
Acetylcholinesterase
,
Animals
,
antioxidant
2021
Traditionally, plants of the genus Calotropis have been used to cure various common diseases. The present research work explores the chemical and biological characterization of one of the most common species of this genus, i.e., Calotropis gigantea (L.) Dryand (syn. Calotropis gigantea (L.) Dryand.), having multiple folklore applications. The ethanolic extract of leaves of Calotropis gigantea (L.) Dryand was analyzed for the phytochemical composition by determining the total bioactive (total phenolic and total flavonoid) contents and UHPLC-MS secondary metabolites analysis. For phytopharmacological evaluation, in vitro antioxidant (including DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation antioxidant assays) activities, enzyme inhibition potential (against AChE, BChE, α-amylase, and tyrosinase enzymes), and in vivo wound healing potential were determined. The tested extract has been shown to contain considerable flavonoid (46.75 mg RE/g extract) and phenolic (33.71 mg GAE/g extract) contents. The plant extract presented considerable antioxidant potential, being the most active for CUPRAC assays. Secondary metabolite UHPLC-MS characterization, in both the positive and negative ionization modes, indicated the tentative presence of 17 different phytocompounds, mostly derivatives of sesquiterpene, alkaloids, and flavonoids. Similarly, the tested extract exhibited considerable inhibitory effects on tyrosinase (81.72 mg KAE/g extract), whereas it showed weak inhibition ability against other tested enzymes. Moreover, in the case of in vivo wound healing assays, significant improvement in wound healing was observed in both the tested models at the doses of 0.5 percent w/w ( p < 0.001 ) and 2.0 percent w/w ( p < 0.01 ) on the 16 th day. The outcomes of the present research work suggested that C. gigantea (L.) Dryand plant extract could be appraised as a potential origin of bioactive molecules having multifunctional medicinal uses.
Journal Article
The utilization of small non‐mammals in traumatic brain injury research: A systematic review
by
Arulsamy, Alina
,
Zulazmi, Nurul Atiqah
,
Ali, Idrish
in
Alzheimer's disease
,
animal model
,
Animal models
2021
Traumatic brain injury (TBI) is the leading cause of death and disability worldwide and has complicated underlying pathophysiology. Numerous TBI animal models have been developed over the past decade to effectively mimic the human TBI pathophysiology. These models are of mostly mammalian origin including rodents and non‐human primates. However, the mammalian models demanded higher costs and have lower throughput often limiting the progress in TBI research. Thus, this systematic review aims to discuss the potential benefits of non‐mammalian TBI models in terms of their face validity in resembling human TBI. Three databases were searched as follows: PubMed, Scopus, and Embase, for original articles relating to non‐mammalian TBI models, published between January 2010 and December 2019. A total of 29 articles were selected based on PRISMA model for critical appraisal. Zebrafish, both larvae and adult, was found to be the most utilized non‐mammalian TBI model in the current literature, followed by the fruit fly and roundworm. In conclusion, non‐mammalian TBI models have advantages over mammalian models especially for rapid, cost‐effective, and reproducible screening of effective treatment strategies and provide an opportunity to expedite the advancement of TBI research. Traumatic brain injury (TBI) perpetuates lifelong and dynamic effects on health and well‐being. Most of the animal models previously developed to study the TBI pathophysiology were focused mainly on mammalian animal model. Despite of all the contributions that they offered, these mammalian animal models have some drawback such as huge sample size needed and very costly which resulted in lengthy process of preclinical development phase with hindered reproducibility option. Hence, this systematic review gathered all the previous non‐mammalian animal model used in TBI research from January 2010 to December 2019 via 3 search engines which were Embase, Scopus, and PubMed. PRISMA method was chosen to select the research article for the discussion. The result shown on 3 popular species comprised of Danio rerio (zebrafish), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (roundworm). Criteria that were discussed were mainly on type of animal model, the functional findings, pathophysiological outcomes, and the limitation of the respective models. In conclusion, this non‐mammalian animal model provides more simplistic approach to bridge the knowledge gaps within TBI research and may shorten the preclinical process for the final findings on the outcome prevention and cure.
Journal Article