Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Ablett, James"
Sort by:
Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells
While Fe–N–C materials are a promising alternative to platinum for catalysing the oxygen reduction reaction in acidic polymer fuel cells, limited understanding of their operando degradation restricts rational approaches towards improved durability. Here we show that Fe–N–C catalysts initially comprising two distinct FeN x sites (S1 and S2) degrade via the transformation of S1 into iron oxides while the structure and number of S2 were unmodified. Structure–activity correlations drawn from end-of-test 57 Fe Mössbauer spectroscopy reveal that both sites initially contribute to the oxygen reduction reaction activity but only S2 substantially contributes after 50 h of operation. From in situ 57 Fe Mössbauer spectroscopy in inert gas coupled to calculations of the Mössbauer signature of FeN x moieties in different electronic states, we identify S1 to be a high-spin FeN 4 C 12 moiety and S2 a low- or intermediate-spin FeN 4 C 10 moiety. These insights lay the groundwork for rational approaches towards Fe–N–C cathodes with improved durability in acidic fuel cells. Fe–N–C materials are a promising alternative to platinum for catalysing the oxygen reduction reaction in acidic polymer fuel cells. Now, a 57 Fe Mössbauer study reveals that while these catalysts initially comprise two distinct FeN x sites, a high-spin FeN 4 C 12 and a low- or intermediate-spin FeN 4 C 10 , only the latter is durable in operating conditions.
Epsilon iron as a spin-smectic state
Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a “spin-smectic” state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.
Atomic Auger Doppler effects upon emission of fast photoelectrons
Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1 s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids. During photoionization, the recoil of the atom or molecule due to the ejected electron can subtly alter the observed photoelectron and Auger spectra from expectations. Here, the authors study Auger emission from isolated neon atoms and see a Doppler shift in the spectrum resulting from translation recoil.
CeRu4Sn6: a strongly correlated material with nontrivial topology
Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu 4 Sn 6 is a strongly correlated material with non-trivial topology.
Spectroscopies and electron microscopies unravel the origin of the first colour photographs
The first colours photographs were created by a process introduced by Edmond Becquerel in 1848. The nature of these photochromatic images colours motivated a debate between scientists during the 19th century, which is still not settled. We present the results of chemical analysis (EDX, HAXPES and EXAFS) and morphology studies (SEM, STEM) aiming at explaining the optical properties of the photochromatic images (UV-visible spectroscopy and low loss EELS). We rule out the two hypotheses (pigment and interferences) that have prevailed since 1848, respectively based on variations in the oxidation degree of the compound forming the sensitized layer and periodically spaced photolytic silver planes. A study of the silver nanoparticles dispersions contained in the coloured layers showed specific localizations and size distributions of the nanoparticles for each colour. These results allow us to formulate a plasmonic hypothesis on the origin of the photochromatic images colours.
Bulk electronic structure of non-centrosymmetric EuTGe3 (T= Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy
Non-centrosymmetric EuTGe3 (T=Co, Ni, Rh, and Ir) possesses magnetic Eu2+ ions and antiferromagnetic ordering appears at low temperatures. Transition metal substitution leads to changes of the unit cell volume and of the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric EuTGe3 (T=Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core level spectrum confirms the robust Eu2+ valence state against the transition metal substitution with a small contribution from Eu3+. The estimated Eu mean-valence is around 2.1 in these compounds as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon changing the transition metal from 3d to 4d to 5d elements, hinting of a change in the Ge-T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.
Epsilon-iron as a spin-smectic state
Using x-ray emission spectroscopy, we find appreciable local magnetic moments until 30-40 GPa in the high-pressure phase of iron, however no magnetic order is detected with neutron powder diffraction down to 1.8 K contrary to previous predictions. Our first-principles calculations reveal a \"spin-smectic\" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally-disordered, spin-smectic state resolves previously perceived contradictions in high pressure iron and could be integral to explaining its puzzling superconductivity.
Separating Electrons and Donors in BaSnO3 via Band Engineering
Through a combination of thin film growth, hard X-ray photoelectron spectroscopy (HAXPES), scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS), magneto-transport measurements, and transport modeling, we report on the demonstration of modulation-doping of BaSnO3 (BSO) using a wider bandgap La-doped SrSnO3 (LSSO) layer. Hard X-ray photoelectron spectroscopy (HAXPES) revealed a valence band offset of 0.71 +/- 0.02 eV between LSSO and BSO resulting in a favorable conduction band offset for remote doping of BSO using LSSO. Nonlinear Hall effect of LSSO/BSO heterostructure confirmed two-channel conduction owing to electron transfer from LSSO to BSO and remained in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schr\"odinger equations. Angle-dependent HAXPES measurements revealed a spatial distribution of electrons over 2-3 unit cells in BSO. These results bring perovskite oxides a step closer to room-temperature oxide electronics by establishing modulation-doping approaches in non-SrTiO3-based oxide heterostructure.
Dynamical screening in SrVO\\(_3\\): Inelastic x-ray scattering experiments and ab initio calculations
We characterize experimentally and theoretically the high-energy dielectric screening properties of the prototypical correlated metal SrVO\\(_3\\). The dynamical structure factor measured by inelastic x-ray scattering spectroscopy as a function of momentum transfer is in very good agreement with first-principles calculations in the adiabatic local density approximation to time-dependent density-functional theory. Our results reveal the crucial importance of crystal local fields in the charge response function of correlated materials: They lead to depolarization effects for localised excitations and couple spectra from different Brillouin zones.
Resonant inelastic x-ray scattering study of doping and temperature dependence of low-energy excitations in La\\(_{1-x}\\)Sr\\(_x\\)VO\\(_3\\)
We present a temperature and doping dependent resonant inelastic X-ray scattering experiment at the V L\\(_{2,3}\\) and O K edges in La\\(_{1-x}\\)Sr\\(_x\\)VO\\(_3\\) for \\(x=0\\) and \\(x=0.1\\). This material is a canonical example of a compound that exhibits a filling control metal-insulator transition and undergoes orbital ordering and antiferromagnetic transitions at low temperature. Temperature dependent measurements at the V L\\(_{3}\\) edge reveal an intra-t\\(_{2g}\\) excitation that blueshifts by 40 meV from room temperature to 30 K at a rate that differs between the para- and antiferromagnetic phases. The lineshape can be partially explained by a purely local model using crystal field theory calculations. At \\(x=0.1\\) the doping is shown to affect the local electronic structure primarily on the O sites, which is in disagreement with a simple Mott-Hubbard picture. We reveal the presence of phonon overtone features at the O K edge, which evidences that the low energy part of the spectrum is dominated by phonon response.