Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Abosekeen, Ashraf"
Sort by:
Enhanced Autonomous Vehicle Positioning Using a Loosely Coupled INS/GNSS-Based Invariant-EKF Integration
by
Noureldin, Aboelmagd
,
Ibrahim, Ahmed
,
Abosekeen, Ashraf
in
Approximation
,
Artificial intelligence
,
Artificial satellites
2023
High-precision navigation solutions are a main requirement for autonomous vehicle (AV) applications. Global navigation satellite systems (GNSSs) are the prime source of navigation information for such applications. However, some places such as tunnels, underpasses, inside parking garages, and urban high-rise buildings suffer from GNSS signal degradation or unavailability. Therefore, another system is required to provide a continuous navigation solution, such as the inertial navigation system (INS). The vehicle’s onboard inertial measuring unit (IMU) is the main INS input measurement source. However, the INS solution drifts over time due to IMU-associated errors and the mechanization process itself. Therefore, INS/GNSS integration is the proper solution for both systems’ drawbacks. Traditionally, a linearized Kalman filter (LKF) such as the extended Kalman filter (EKF) is utilized as a navigation filter. The EKF deals only with the linearized errors and suppresses the higher orders using the Taylor expansion up to the first order. This paper introduces a loosely coupled INS/GNSS integration scheme using the invariant extended Kalman filter (IEKF). The IEKF state estimate is independent of the Jacobians that are derived in the EKF; instead, it uses the matrix Lie group. The proposed INS/GNSS integration using IEKF is applied to a real road trajectory for performance validation. The results show a significant enhancement when using the proposed system compared to the traditional INS/GNSS integrated system that uses EKF in both GNSS signal presence and blockage cases. The overall trajectory 2D-position RMS error reduced from 19.4 m to 3.3 m with 82.98% improvement and the 2D-position max error reduced from 73.9 m to 14.2 m with 80.78% improvement.
Journal Article
A Machine Learning Approach for an Improved Inertial Navigation System Solution
2022
The inertial navigation system (INS) is a basic component to obtain a continuous navigation solution in various applications. The INS suffers from a growing error over time. In particular, its navigation solution depends mainly on the quality and grade of the inertial measurement unit (IMU), which provides the INS with both accelerations and angular rates. However, low-cost small micro-electro-mechanical systems (MEMSs) suffer from huge error sources such as bias, the scale factor, scale factor instability, and highly non-linear noise. Therefore, MEMS-IMU measurements lead to drifts in the solutions when used as a control input to the INS. Accordingly, several approaches have been introduced to model and mitigate the errors associated with the IMU. In this paper, a machine-learning-based adaptive neuro-fuzzy inference system (ML-based-ANFIS) is proposed to leverage the performance of low-grade IMUs in two phases. The first phase was training 50% of the low-grade IMU measurements with a high-end IMU to generate a suitable error model. The second phase involved testing the developed model on the remaining low-grade IMU measurements. A real road trajectory was used to evaluate the performance of the proposed algorithm. The results showed the effectiveness of utilizing the proposed ML-ANFIS algorithm to remove the errors and improve the INS solution compared to the traditional one. An improvement of 70% in the 2D positioning and of 92% in the 2D velocity of the INS solution were attained when the proposed algorithm was applied compared to the traditional INS solution.
Journal Article
Centralized Measurement Level Fusion of GNSS and Inertial Sensors for Robust Positioning and Navigation
by
Noureldin, Aboelmagd
,
Hendy, Hossam
,
Kamel, Ahmed
in
Accuracy
,
Algorithms
,
Artificial satellites in navigation
2025
In the current era, which is characterized by increasing demand for high-precision location and navigation capabilities, various industries, including those involved in intelligent vehicle systems, logistics, augmented reality, and more, heavily rely on accurate location information to optimize processes and deliver personalized experiences. In this context, the integration of Global Navigation Satellite System (GNSS) and inertial sensor technologies in smartphones has emerged as a critical solution to meet these demands. This research paper presents an algorithm that combines a GNSS with a modified downdate algorithm (MDDA) for satellite selection and integrates inertial navigation systems (INS) in both loosely and tightly coupled configurations. The primary objective was to harness the inherent strengths of these onboard sensors for navigation in challenging environments. These algorithms were meticulously designed to enhance performance and address the limitations encountered in harsh terrain. To evaluate the effectiveness of these proposed systems, vehicular experiments were conducted under diverse GNSS observation conditions. The experimental results clearly illustrate the considerable improvements achieved by the recommended tightly coupled (TC) algorithm when integrated with MDDA, in contrast to the loosely coupled (LC) algorithm. Specifically, the TC algorithm demonstrated a remarkable reduction of over 90% in 2D position root mean square error (RMSE) and a 75% reduction in 3D position RMSE when compared to solutions utilizing the weighting matrix provided by Google with all visible satellites. These findings underscore the substantial advancements in precision resulting from the integration of GNSS and INS technologies, thereby unlocking the full potential of transformative applications in the realm of intelligent vehicle navigation.
Journal Article
Design and Implementation of an Enhanced Matched Filter for Sidelobe Reduction of Pulsed Linear Frequency Modulation Radar
2021
Pulse compression techniques are commonly used in linear frequency modulated (LFM) waveforms to improve the signal-to-noise ratios (SNRs) and range resolutions of pulsed radars, whose detection capabilities are affected by the sidelobes. In this study, a sidelobe reduction filter (SRF) was designed and implemented using software defined radio (SDR). An enhanced matched filter (EMF) that combines a matched filter (MF) and an SRF is proposed and was implemented. In contrast to the current commonly used approaches, the mathematical model of the SRF frequency response is extracted without depending on any iteration methods or adaptive techniques, which results in increased efficiency and computational speed for the developed model. The performance of the proposed EMF was verified through the measurement of four metrics, including the peak sidelobe ratio (PSLR), the impulse response width (IRW), the mainlobe loss ratio (MLR), and the receiver operational characteristics (ROCs) at different SNRs. The ambiguity function was then used to characterize the Doppler effect on the designed EMF. In addition, the detection of single and multiple targets using the proposed EMF was performed, and the results showed that it overcame the masking problem due to its effective reduction of the sidelobes. Hence, the practical application of the EMF matches the performance analysis. Moreover, when implementing the EMF proposed in this paper, it outperformed the common MF, especially when detecting targets moving at low speeds and having small radar cross-sections (RCS), even under severe masking conditions.
Journal Article
A Novel Machine Learning-Based ANFIS Calibrated RISS/GNSS Integration for Improved Navigation in Urban Environments
2024
Autonomous vehicles (AVs) require accurate navigation, but the reliability of Global Navigation Satellite Systems (GNSS) can be degraded by signal blockage and multipath interference in urban areas. Therefore, a navigation system that integrates a calibrated Reduced Inertial Sensors System (RISS) with GNSS is proposed. The system employs a machine-learning-based Adaptive Neuro-Fuzzy Inference System (ANFIS) as a novel calibration technique to improve the accuracy and reliability of the RISS. The ANFIS-based RISS/GNSS integration provides a more precise navigation solution in such environments. The effectiveness of the proposed integration scheme was validated by conducting tests using real road trajectory and simulated GNSS outages ranging from 50 to 150 s. The results demonstrate a significant improvement in 2D position Root Mean Square Error (RMSE) of 43.8% and 28% compared to the traditional RISS/GNSS and the frequency modulated continuous wave (FMCW) Radar (Rad)/RISS/GNSS integrated navigation systems, respectively. Moreover, an improvement of 47.5% and 23.4% in 2D position maximum errors is achieved compared to the RISS/GNSS and the Rad/RISS/GNSS integrated navigation systems, respectively. These results reveal significant improvements in positioning accuracy, which is essential for safe and efficient navigation. The long-term stability of the proposed system makes it suitable for various navigation applications, particularly those requiring continuous and precise positioning information. The ANFIS-based approach used in the proposed system is extendable to other low-end IMUs, making it an attractive option for a wide range of applications.
Journal Article
Implementation of Parallel Cascade Identification at Various Phases for Integrated Navigation System
by
Noureldin, Aboelmagd
,
Georgy, Jacques
,
Korenberg, Michael J.
in
Accelerometers
,
Accuracy
,
Algorithms
2021
Global navigation satellite systems (GNSS) are widely used for the navigation of land vehicles. However, the positioning accuracy of GNSS, such as the global positioning system (GPS), deteriorates in urban areas due to signal blockage and multipath effects. GNSS can be integrated with a micro-electro-mechanical system (MEMS)–based inertial navigation system (INS), such as a reduced inertial sensor system (RISS) using a Kalman filter (KF) to enhance the performance of the integrated navigation solution in GNSS challenging environments. The linearized KF cannot model the low-cost and small-size sensors due to relatively high noise levels and compound error characteristics. This paper reviews two approaches to employing parallel cascade identification (PCI), a non-linear system identification technique, augmented with KF to enhance the navigational solution. First, PCI models azimuth errors for a loosely coupled 2D RISS integrated system with GNSS to obtain a navigation solution. The experimental results demonstrated that PCI improved the integrated 2D RISS/GNSS performance by modeling linear, non-linear, and other residual azimuth errors. For the second scenario, PCI is utilized for modeling residual pseudorange correlated errors of a KF-based tightly coupled RISS/GNSS navigation solution. Experimental results have shown that PCI enhances the performance of the tightly coupled KF by modeling the non-linear pseudorange errors to provide an enhanced and more reliable solution. For the first algorithm, the results demonstrated that PCI can enhance the performance by 77% as compared to the KF solution during the GNSS outages. For the second algorithm, the performance improvement for the proposed PCI technique during the availability of three satellites was 39% compared to the KF solution.
Journal Article
Integrating ACC-FMCW Radar for Multi-Sensor Navigation in Challenging GNSS Environments
2018
Autonomous vehicles’ positioning and navigation (POS/NAV) systems provide drivers with route guidance information relying mostly on the Global Navigation Satellite Systems (GNSS). The GNSS-based POS/NAV systems suffer from satellite signal blockage, interference and multipath usually experienced by land vehicles in urban areas. The integration with vehicle motion sensors enhances the overall performance for a short period of time. Autonomous land vehicles are now equipped with cameras, radars, and laser ranging devices utilized for blind spot display, collision avoidance, and lane departure warning. The availability of these systems provides an attractive opportunity to increase the POS/NAV system accuracy. This research focuses on the development of an integrated multi-sensor POS/NAV system capable of offering seamless positioning at meter level accuracy for autonomous land vehicles. To bridge the GNSS outages a multi-sensor system utilizing magnetic azimuth from a calibrated magnetometer is developed to enhance the performance of the overall POS/NAV solution by limiting the gyroscope bias drift over time. A new calibration technique is developed to reduce the errors associated with the magnetometer measurements and produce a robust azimuth. Furthermore, a new algorithm is developed to obtain robust positioning information from the adaptive cruise control frequency modulated continuous wave (ACC-FMCW) radar which is used to update the navigation system during GNSS outages. The proposed system is further improved by augmenting magnetic-azimuth update to limit the position drift for long GNSS outages. A further enhancement is added to the system by utilizing fast orthogonal search (FOS) to provide nonlinear error modeling of the residual errors associated with the ACC-FMCW radar positioning solution in order to reduce the error growth over extended and frequent GNSS outages. The proposed system is evaluated on several real road test trajectories involving different types of land vehicles experiencing different motion dynamics. GNSS outages of up to 10 minutes were intentionally introduced to examine the performance. The results show that the proposed method has resulted in a significant performance improvement in the positioning accuracy that can reach more than 80% if compared to the present methods that rely only on integrating the inertial sensor technology with GNSS.
Dissertation