Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
57
result(s) for
"Abrego, David"
Sort by:
Combining Drones and Deep Learning to Automate Coral Reef Assessment with RGB Imagery
2023
Coral reefs and their associated marine communities are increasingly threatened by anthropogenic climate change. A key step in the management of climate threats is an efficient and accurate end-to-end system of coral monitoring that can be generally applied to shallow water reefs. Here, we used RGB drone-based imagery and a deep learning algorithm to develop a system of classifying bleached and unbleached corals. Imagery was collected five times across one year, between November 2018 and November 2019, to assess coral bleaching and potential recovery around Lord Howe Island, Australia, using object-based image analysis. This training mask was used to develop a large training dataset, and an mRES-uNet architecture was chosen for automated segmentation. Unbleached coral classifications achieved a precision of 0.96, a recall of 0.92, and a Jaccard index of 0.89, while bleached corals achieved 0.28 precision, 0.58 recall, and a 0.23 Jaccard index score. Subsequently, methods were further refined by creating bleached coral objects (>16 pixels total) using the neural network classifications of bleached coral pixels, to minimize pixel error and count bleached coral colonies. This method achieved a prediction precision of 0.76 in imagery regions with >2000 bleached corals present, and 0.58 when run on an entire orthomosaic image. Bleached corals accounted for the largest percentage of the study area in September 2019 (6.98%), and were also significantly present in March (2.21%). Unbleached corals were the least dominant in March (28.24%), but generally accounted for ~50% of imagery across other months. Overall, we demonstrate that drone-based RGB imagery, combined with artificial intelligence, is an effective method of coral reef monitoring, providing accurate and high-resolution information on shallow reef environments in a cost-effective manner.
Journal Article
DMSP biosynthesis by an animal and its role in coral thermal stress response
by
Tapiolas, Dianne M.
,
Ceh, Janja
,
Willis, Bette L.
in
631/158/2165
,
631/449/2667
,
704/172/169/824
2013
Until now, dimethylsulphoniopropionate (DMSP), an important component in the sulphur cycle, has been thought to be produced solely by algae and some plants; however, this study shows that the coral animal also produces DMSP, in addition to that produced by the coral’s algal symbiont, with potential implications for the sulphur cycle and its climatic consequences as corals and their symbionts are affected by global change.
DMSP biosynthesis in coral animals
Dimethylsulphoniopropionate (DMSP) is a widely distributed metabolite that is converted by marine bacteria to the volatile gas dimethylsulphide (DMS), a major contributor of sulphur to the atmosphere that contributes to cloud formation and hence influences climate. Here Jean-Baptiste Raina
et al
. report DMSP formation by two common reef-building coral species,
Acropora millepora
and
Acropora tenuis
. This comes as a surprise — previously it was thought that DMSP was produced solely by algae (including species symbiotic in coral) and some plants. DMSP biosynthesis may help the coral animals to survive conditions of thermal stress. This finding could have implications for how DMSP production responds to the effects of global change on corals and their symbionts.
Globally, reef-building corals are the most prolific producers of dimethylsulphoniopropionate (DMSP)
1
,
2
, a central molecule in the marine sulphur cycle and precursor of the climate-active gas dimethylsulphide
3
,
4
. At present, DMSP production by corals is attributed entirely to their algal endosymbiont,
Symbiodinium
2
. Combining chemical, genomic and molecular approaches, we show that coral juveniles produce DMSP in the absence of algal symbionts. DMSP levels increased up to 54% over time in newly settled coral juveniles lacking algal endosymbionts, and further increases, up to 76%, were recorded when juveniles were subjected to thermal stress. We uncovered coral orthologues of two algal genes recently identified in DMSP biosynthesis, strongly indicating that corals possess the enzymatic machinery necessary for DMSP production. Our results overturn the paradigm that photosynthetic organisms are the sole biological source of DMSP, and highlight the double jeopardy represented by worldwide declining coral cover, as the potential to alleviate thermal stress through coral-produced DMSP declines correspondingly.
Journal Article
Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification
by
Harrington, Lindsay
,
De'ath, Glenn
,
Fabricius, Katharina E.
in
Acclimatization
,
Acidification
,
Acids
2017
The future of coral reefs under increasing CO2 depends on their capacity to recover from disturbances. To predict the recovery potential of coral communities that are fully acclimatized to elevated CO2, we compared the relative success of coral recruitment and later life stages at two volcanic CO2 seeps and adjacent control sites in Papua New Guinea. Our field experiments showed that the effects of ocean acidification (OA) on coral recruitment rates were up to an order of magnitude greater than the effects on the survival and growth of established corals. Settlement rates, recruit and juvenile densities were best predicted by the presence of crustose coralline algae, as opposed to the direct effects of seawater CO2. Offspring from high CO2 acclimatized parents had similarly impaired settlement rates as offspring from control parents. For most coral taxa, field data showed no evidence of cumulative and compounding detrimental effects of high CO2 on successive life stages, and three taxa showed improved adult performance at high CO2 that compensated for their low recruitment rates. Our data suggest that severely declining capacity for reefs to recover, due to altered settlement substrata and reduced coral recruitment, is likely to become a dominant mechanism of how OA will alter coral reefs.
Journal Article
Localized outbreaks of coral disease on Arabian reefs are linked to extreme temperatures and environmental stressors
2020
The Arabian Peninsula borders the hottest reefs in the world, and corals living in these extreme environments can provide insight into the effects of warming on coral health and disease. Here, we examined coral reef health at 17 sites across three regions along the northeastern Arabian Peninsula (Persian Gulf, Strait of Hormuz and Oman Sea) representing a gradient of environmental conditions. The Persian Gulf has extreme seasonal fluctuations in temperature and chronic hypersalinity, whereas the other two regions experience more moderate conditions. Field surveys identified 13 coral diseases including tissue loss diseases of unknown etiology (white syndromes) in Porites, Platygyra, Dipsastraea, Cyphastrea, Acropora and Goniopora; growth anomalies in Porites, Platygyra and Dipsastraea; black band disease in Platygyra, Dipsastraea, Acropora, Echinopora and Pavona; bleached patches in Porites and Goniopora and a disease unique to this region, yellow-banded tissue loss in Porites. The most widespread diseases were Platygyra growth anomalies (52.9% of all surveys), Acropora white syndrome (47.1%) and Porites bleached patches (35.3%). We found a number of diseases not yet reported in this region and found differential disease susceptibility among coral taxa. Disease prevalence was higher on reefs within the Persian Gulf (avg. 2.05%) as compared to reefs within the Strait of Hormuz (0.46%) or Oman Sea (0.25%). A high number of localized disease outbreaks (8 of 17 sites) were found, especially within the Persian Gulf (5 of 8 sites). Across all regions, the majority of variation in disease prevalence (82.2%) was associated with the extreme temperature range experienced by these corals combined with measures of organic pollution and proximity to shore. Thermal stress is known to drive a number of coral diseases, and thus, this region provides a platform to study disease at the edge of corals’ thermal range.
Journal Article
Induction of Larval Metamorphosis of the Coral Acropora millepora by Tetrabromopyrrole Isolated from a Pseudoalteromonas Bacterium
by
Tapiolas, Dianne M.
,
Steinberg, Peter D.
,
Motti, Cherie A.
in
Acropora
,
Acropora millepora
,
Acropora palmata
2011
The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2) in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.
Journal Article
Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress
by
van Oppen, Madeleine J.H
,
Ulstrup, Karin E
,
Willis, Bette L
in
Acropora millepora
,
Acropora tenuis
,
Animals
2008
The impacts of warming seas on the frequency and severity of bleaching events are well documented, but the potential for different Symbiodinium types to enhance the physiological tolerance of reef corals is not well understood. Here we compare the functionality and physiological properties of juvenile corals when experimentally infected with one of two homologous Symbiodinium types and exposed to combined heat and light stress. A suite of physiological indicators including chlorophyll a fluorescence, oxygen production and respiration, as well as pigment concentration consistently demonstrated lower metabolic costs and enhanced physiological tolerance of Acropora tenuis juveniles when hosting Symbiodinium type C1 compared with type D. In other studies, the same D-type has been shown to confer higher thermal tolerance than both C2 in adults and C1 in juveniles of the closely related species Acropora millepora. Our results challenge speculations that associations with type D are universally most robust to thermal stress. Although the heat tolerance of corals may be contingent on the Symbiodinium strain in hospite, our results highlight the complexity of interactions between symbiotic partners and a potential role for host factors in determining the physiological performance of reef corals.
Journal Article
Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions
by
Cumbo, Vivian R.
,
Baird, Andrew H.
,
Sommer, Brigitte
in
Algae
,
Anthropocene
,
Anthropocene epoch
2021
Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constraints, competition with macro-algae or other invertebrates, and availability of suitable settlement cues or micro-algal symbionts. Surprisingly, there is a paucity of data supporting several of these hypotheses. Given the immense pressures faced by corals in the Anthropocene, it is critical to understand the factors limiting their distribution in order to predict potential range expansions and the role that high latitude reefs can play as refuges from climate change. This review examines these factors and outlines critical research areas to address knowledge gaps in our understanding of light/temperature interactions, coral-Symbiodiniaceae associations, settlement cues, and competition in high latitude reefs.
Journal Article
Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis
by
Beltran, Victor H.
,
Puill-Stephan, Eneour
,
Matz, Mikhail V.
in
Acropora
,
Acropora millepora
,
Algae
2017
Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, larval cultivation, induction of larval settlement by crustose coralline algae, and inoculation of newly settled juveniles with their dinoflagellate symbiont Symbiodinium . Larval rearing densities at or below 0.2 larvae mL −1 were found to maximize larval survival and settlement success in culture tanks while minimizing maintenance effort. Induction of larval settlement via the addition of a ground mixture of diverse crustose coralline algae (CCA) is recommended, given the challenging nature of in situ CCA identification and our finding that non settlement-inducing CCA assemblages do not inhibit larval settlement if suitable assemblages are present. Although order of magnitude differences in infectivity were found between common Great Barrier Reef Symbiodinium clades C and D, no significant differences in Symbiodinium uptake were observed between laboratory-cultured and wild-harvested symbionts in each case. The technique presented here for Acropora millepora can be adapted for research and restoration efforts in a wide range of broadcast spawning coral species.
Journal Article
Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts
by
Smith, Luke D.
,
Cooper, Timothy F.
,
Hoogenboom, Mia O.
in
Accumulation
,
Animals
,
Anthozoa - growth & development
2012
Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l(-1) TSS (25 mg cm(-2) day(-1)) for M. aequituberculata and 100 mg l(-1) TSS (83 mg cm(-2) day(-1)) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue.
Journal Article
Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora
2014
The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT-qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement.
Journal Article