Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Abrevaya, Sofía"
Sort by:
A multidimensional and multi-feature framework for cardiac interoception
Interoception (the sensing of inner-body signals) is a multi-faceted construct with major relevance for basic and clinical neuroscience research. However, the neurocognitive signatures of this domain (cutting across behavioral, electrophysiological, and fMRI connectivity levels) are rarely reported in convergent or systematic fashion. Additionally, various controversies in the field might reflect the caveats of standard interoceptive accuracy (IA) indexes, mainly based on heartbeat detection (HBD) tasks. Here we profit from a novel IA index (md) to provide a convergent multidimensional and multi-feature approach to cardiac interoception. We found that outcomes from our IA-md index are associated with –and predicted by– canonical markers of interoception, including the hd-EEG-derived heart-evoked potential (HEP), fMRI functional connectivity within interoceptive hubs (insular, somatosensory, and frontal networks), and socio-emotional skills. Importantly, these associations proved more robust than those involving current IA indexes. Furthermore, this pattern of results persisted when taking into consideration confounding variables (gender, age, years of education, and executive functioning). This work has relevant theoretical and clinical implications concerning the characterization of cardiac interoception and its assessment in heterogeneous samples, such as those composed of neuropsychiatric patients. •The varied signatures of cardiac interoception are rarely explored in combination.•We address this issue through a novel multidimensional approach.•We tap behavioral correlates with a novel interoceptive accuracy index (md).•We examine key electrophysiological, hemodynamic and socio-emotional dimensions.•Our md index is associated with canonical neurocognitive markers of interoception.
Multicentric evidence of emotional impairments in hypertensive heart disease
The mechanisms underlying emotional alterations constitute a key research target in neuroscience. Emerging evidence indicates that these disruptions can be related to abnormal interoception (i.e., the sensing of visceral feelings), as observed in patients with cardiodynamic deficits. To directly assess these links, we performed the first multicenter study on emotion recognition and interoception in patients with hypertensive heart disease (HHD). Participants from two countries completed a facial emotion recognition test, and a subsample additionally underwent an interoception protocol based on a validated heartbeat detection task. HHD patients from both countries presented deficits in the recognition of overall and negative emotions. Moreover, interoceptive performance was impaired in the HHD group. In addition, a significant association between interoceptive performance and emotion recognition was observed in the control group, but this relation was abolished in the HHD group. All results survived after covariance with cognitive status measures, suggesting they were not biased by general cognitive deficits in the patients. Taken together, these findings suggest that emotional recognition alterations could represent a sui generis deficit in HHD, and that it may be partially explained by the disruption of mechanisms subserving the integration of neuro-visceral signals.
The relationship between executive functions and fluid intelligence in multiple sclerosis
Deficits in cognitive functions dependent upon the integrity of the prefrontal cortex have been described in Multiple Sclerosis (MS). In a series of studies we have shown that fluid intelligence (g) is a substantial contributor to frontal deficits and that, for some classical \"executive\" tasks, frontal deficits were entirely explained by g. However, for another group of frontal tasks deficits remained once g was introduced as a covariate. This second set of tests included multitasking and theory of mind tasks. In the present study, we aimed at determining the role of fluid intelligence in frontal deficits seen in patients with MS. A group of patients with Relapsing Remitting MS (n = 36) and a group of control subjects (n = 42) were assessed with a battery of classical executive tests (which included the Wisconsin Card Sorting Test, Verbal Fluency, and Trail Making Test B), a multitasking test, a theory of mind test and a fluid intelligence test. MS patients showed significant deficits in the fluid intelligence task. We found differences between patients and control subjects in all tests except for the multitasking test. The differences in the classical executive tests became non-significant once fluid intelligence was introduced as a covariate, but differences in theory of mind remained. The present results suggest that fluid intelligence can be affected in MS and that this impairment can play a role in the executive deficits described in MS.
Stop Saying That It Is Wrong! Psychophysiological, Cognitive, and Metacognitive Markers of Children’s Sensitivity to Punishment
Neurodevelopmental evidence suggests that children's main decision-making strategy is to avoid options likely to induce punishment. However, the cognitive and affective factors contributing to children's avoidance to high punishment frequency remain unknown. The present study explored psychophysiological, cognitive, and metacognitive processes associated with sensitivity to punishment frequency. We evaluated 54 participants (between 8 and 15 years old) with a modified Iowa Gambling Task for children (IGT-C) which included options with varying long-term profit and punishment frequencies. Skin conductance responses (SCRs) were recorded during this task. Additionally, we assessed IGT-C metacognitive knowledge, fluid intelligence, and executive functions. Participants exhibited behavioral avoidance and high anticipatory SCRs to options with high frequency of punishment. Moreover, age, IGT-C metacognitive knowledge, and inhibitory control were associated with individual differences in sensitivity to punishment frequency. Our results suggest that children's preference for infrequently punished decisions is partially explained by psychophysiological signals as well as task complexity and development of cognitive control.
Stop Saying That It Is Wrong! Psychophysiological, Cognitive, and Metacognitive Markers of Children's Sensitivity to Punishment: e0133683
Neurodevelopmental evidence suggests that children's main decision-making strategy is to avoid options likely to induce punishment. However, the cognitive and affective factors contributing to children's avoidance to high punishment frequency remain unknown. The present study explored psychophysiological, cognitive, and metacognitive processes associated with sensitivity to punishment frequency. We evaluated 54 participants (between 8 and 15 years old) with a modified Iowa Gambling Task for children (IGT-C) which included options with varying long-term profit and punishment frequencies. Skin conductance responses (SCRs) were recorded during this task. Additionally, we assessed IGT-C metacognitive knowledge, fluid intelligence, and executive functions. Participants exhibited behavioral avoidance and high anticipatory SCRs to options with high frequency of punishment. Moreover, age, IGT-C metacognitive knowledge, and inhibitory control were associated with individual differences in sensitivity to punishment frequency. Our results suggest that children's preference for infrequently punished decisions is partially explained by psychophysiological signals as well as task complexity and development of cognitive control.