Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Abud, Helen E"
Sort by:
Harnessing 3D models to uncover the mechanisms driving infectious and inflammatory disease in the intestine
Representative models of intestinal diseases are transforming our knowledge of the molecular mechanisms of disease, facilitating effective drug screening and avenues for personalised medicine. Despite the emergence of 3D in vitro intestinal organoid culture systems that replicate the genetic and functional characteristics of the epithelial tissue of origin, there are still challenges in reproducing the human physiological tissue environment in a format that enables functional readouts. Here, we describe the latest platforms engineered to investigate environmental tissue impacts, host-microbe interactions and enable drug discovery. This highlights the potential to revolutionise knowledge on the impact of intestinal infection and inflammation and enable personalised disease modelling and clinical translation.
Does side matter? Deciphering mechanisms that underpin side-dependent pathogenesis and therapy response in colorectal cancer
Colorectal cancer (CRC) is stratified by heterogeneity between disease sites, with proximal right-sided CRC (RCRC) multifactorial in its distinction from distal left-sided CRC (LCRC). Notably, right-sided tumors are associated with aggressive disease characteristics which culminate in poor clinical outcomes for these patients. While factors such as mutational profile and patterns of metastasis have been suggested to contribute to differences in therapy response, the exact mechanisms through which RCRC resists effective treatment have yet to be elucidated. In response, recent analyzes, including those utilizing whole genome sequencing, transcriptional profiling, and single-cell analyses, have demonstrated that key molecular differences exist between disease sites, with differentially expressed genes spanning a diverse range of cellular functions. Here, we review and contextualize the most recent data on molecular biomarkers found to exhibit discordance between RCRC and LCRC, and highlight candidates for further investigation, including those which present promise for future clinical application. Given the present disparity in survival outcomes for RCRC patients, we expect the prognostic biomarkers presented in our review to be useful in establishing future directions for the side-specific treatment of CRC.
INPP4B promotes PI3Kα-dependent late endosome formation and Wnt/β-catenin signaling in breast cancer
INPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P 2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA -mutant ER + breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA -mutant ER + breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P 2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3β lysosomal degradation and activation of Wnt/β-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER + breast cancer via PI(3,4)P 2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/β-catenin therapies. The PI(3,4)P 2 4-phosphatase, INPP4B, functions as a tumour suppressor in triple negative breast cancer. Here, the authors show that INPP4B enhances proliferation and growth of PIK3CA -mutant ER +  breast cancers by promoting PI3Kα-dependent late endosome formation and trafficking that leads to the activation of Wnt/β-catenin signalling.
Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis
Serrated colorectal cancer (CRC) accounts for approximately 25% of cases and includes tumours that are among the most treatment resistant and with worst outcomes. This CRC subtype is associated with activating mutations in the mitogen-activated kinase pathway gene, , and epigenetic modifications termed the CpG Island Methylator Phenotype, leading to epigenetic silencing of key tumour suppressor genes. It is still not clear which (epi-)genetic changes are most important in neoplastic progression and we begin to address this knowledge gap herein. We use organoid culture combined with CRISPR/Cas9 genome engineering to sequentially introduce genetic alterations associated with serrated CRC and which regulate the stem cell niche, senescence and DNA mismatch repair. Targeted biallelic gene alterations were verified by DNA sequencing. Organoid growth in the absence of niche factors was assessed, as well as analysis of downstream molecular pathway activity. Orthotopic engraftment of complex organoid lines, but not alone, quickly generated adenocarcinoma in vivo with serrated features consistent with human disease. Loss of the essential DNA mismatch repair enzyme, Mlh1, led to microsatellite instability. Sphingolipid metabolism genes are differentially regulated in both our mouse models of serrated CRC and human CRC, with key members of this pathway having prognostic significance in the human setting. We generate rapid, complex models of serrated CRC to determine the contribution of specific genetic alterations to carcinogenesis. Analysis of our models alongside patient data has led to the identification of a potential susceptibility for this tumour type.
Source and Impact of the EGF Family of Ligands on Intestinal Stem Cells
Epidermal Growth Factor (EGF) has long been known for its role in promoting proliferation of intestinal epithelial cells. EGF is produced by epithelial niche cells at the base of crypts in vivo and is routinely added to the culture medium to support the growth of intestinal organoids ex vivo . The recent identification of diverse stromal cell populations that reside underneath intestinal crypts has enabled the characterization of key growth factor cues supplied by these cells. The nature of these signals and how they are delivered to drive intestinal epithelial development, daily homeostasis and tissue regeneration following injury are being investigated. It is clear that aside from EGF, other ligands of the family, including Neuregulin 1 (NRG1), have distinct roles in supporting the function of intestinal stem cells through the ErbB pathway.
Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models
Background Particular breast cancer subtypes pose a clinical challenge due to limited targeted therapeutic options and/or poor responses to the existing targeted therapies. While cell lines provide useful pre-clinical models, patient-derived xenografts (PDX) and organoids (PDO) provide significant advantages, including maintenance of genetic and phenotypic heterogeneity, 3D architecture and for PDX, tumor–stroma interactions. In this study, we applied an integrated multi-omic approach across panels of breast cancer PDXs and PDOs in order to identify candidate therapeutic targets, with a major focus on specific FGFRs. Methods MS-based phosphoproteomics, RNAseq, WES and Western blotting were used to characterize aberrantly activated protein kinases and effects of specific FGFR inhibitors. PDX and PDO were treated with the selective tyrosine kinase inhibitors AZD4547 (FGFR1-3) and BLU9931 (FGFR4). FGFR4 expression in cancer tissue samples and PDOs was assessed by immunohistochemistry. METABRIC and TCGA datasets were interrogated to identify specific FGFR alterations and their association with breast cancer subtype and patient survival. Results Phosphoproteomic profiling across 18 triple-negative breast cancers (TNBC) and 1 luminal B PDX revealed considerable heterogeneity in kinase activation, but 1/3 of PDX exhibited enhanced phosphorylation of FGFR1, FGFR2 or FGFR4. One TNBC PDX with high FGFR2 activation was exquisitely sensitive to AZD4547. Integrated ‘omic analysis revealed a novel FGFR2-SKI fusion that comprised the majority of FGFR2 joined to the C-terminal region of SKI containing the coiled-coil domains. High FGFR4 phosphorylation characterized a luminal B PDX model and treatment with BLU9931 significantly decreased tumor growth. Phosphoproteomic and transcriptomic analyses confirmed on-target action of the two anti-FGFR drugs and also revealed novel effects on the spliceosome, metabolism and extracellular matrix (AZD4547) and RIG-I-like and NOD-like receptor signaling (BLU9931). Interrogation of public datasets revealed FGFR2 amplification, fusion or mutation in TNBC and other breast cancer subtypes, while FGFR4 overexpression and amplification occurred in all breast cancer subtypes and were associated with poor prognosis. Characterization of a PDO panel identified a luminal A PDO with high FGFR4 expression that was sensitive to BLU9931 treatment, further highlighting FGFR4 as a potential therapeutic target. Conclusions This work highlights how patient-derived models of human breast cancer provide powerful platforms for therapeutic target identification and analysis of drug action, and also the potential of specific FGFRs, including FGFR4, as targets for precision treatment.
Engineered Plant‐Based Nanocellulose Hydrogel for Small Intestinal Organoid Growth
Organoids are three‐dimensional self‐renewing and organizing clusters of cells that recapitulate the behavior and functionality of developed organs. Referred to as “organs in a dish,” organoids are invaluable biological models for disease modeling or drug screening. Currently, organoid culture commonly relies on an expensive and undefined tumor‐derived reconstituted basal membrane which hinders its application in high‐throughput screening, regenerative medicine, and diagnostics. Here, we introduce a novel engineered plant‐based nanocellulose hydrogel is introduced as a well‐defined and low‐cost matrix that supports organoid growth. Gels containing 0.1% nanocellulose fibers (99.9% water) are ionically crosslinked and present mechanical properties similar to the standard animal‐based matrix. The regulation of the osmotic pressure is performed by a salt‐free strategy, offering conditions for cell survival and proliferation. Cellulose nanofibers are functionalized with fibronectin‐derived adhesive sites to provide the required microenvironment for small intestinal organoid growth and budding. Comparative transcriptomic profiling reveals a good correlation with transcriptome‐wide gene expression pattern between organoids cultured in both materials, while differences are observed in stem cells‐specific marker genes. These hydrogels are tunable and can be combined with laminin‐1 and supplemented with insulin‐like growth factor (IGF‐1) to optimize the culture conditions. Nanocellulose hydrogel emerges as a promising matrix for the growth of organoids. Plant‐based nanocellulose hydrogel is introduced as a well‐defined and very low‐cost porous nanofibrous matrix that supports organoid growth. The mechanical, chemical, and biological properties of the gel are engineered to mimic the extracellular matrix (ECM), providing the required microenvironment for small intestinal organoid culture. This performant hydrogel is tunable with ECM‐derived components, emerging as a promising biomaterial for organoid systems.
Patient-Derived Colorectal Cancer Organoids Upregulate Revival Stem Cell Marker Genes following Chemotherapeutic Treatment
Colorectal cancer stem cells have been proposed to drive disease progression, tumour recurrence and chemoresistance. However, studies ablating leucine rich repeat containing G protein-coupled receptor 5 (LGR5)-positive stem cells have shown that they are rapidly replenished in primary tumours. Following injury in normal tissue, LGR5+ stem cells are replaced by a newly defined, transient population of revival stem cells. We investigated whether markers of the revival stem cell population are present in colorectal tumours and how this signature relates to chemoresistance. We examined the expression of different stem cell markers in a cohort of patient-derived colorectal cancer organoids and correlated expression with sensitivity to 5-fluorouracil (5-FU) treatment. Our findings revealed that there was inter-tumour variability in the expression of stem cell markers. Clusterin (CLU), a marker of the revival stem cell population, was significantly enriched following 5-FU treatment and expression correlated with the level of drug resistance. Patient outcome data revealed that CLU expression is associated with both lower patient survival and an increase in disease recurrence. This suggests that CLU is a marker of drug resistance and may identify cells that drive colorectal cancer progression.
ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer
Several studies have suggested ERBB3/HER3 may be a useful prognostic marker for colorectal cancer. Tumours with an intestinal stem cell signature have also been shown to be more aggressive. Here, we investigate whether ERBB3 is associated with intestinal stem cell markers in colorectal cancer and if cancer stem cells within tumours are marked by expression of ERBB3. Expression of ERBB3 and intestinal stem cell markers (LGR5, EPHB2, CD44s and CD44v6) was assessed by qRT-PCR in primary colorectal tumours (stages 0 to IV) and matched normal tissues from 53 patients. The localisation of ERBB3, EPHB2 and KI-67 within tumours was investigated using co-immunofluorescence. Expression of ERBB3 and intestinal stem cell markers were significantly elevated in adenomas and colorectal tumours compared to normal tissue. Positive correlations were found between ERBB3 and intestinal stem cell markers. However, co-immunofluorescence analysis showed that ERBB3 and EPHB2 marked specific cell populations that were mutually exclusive within tumours with distinct proliferative potentials, the majority of ERBB3+ve cells being non-proliferative. This pattern resembles cellular organisation within normal colonic epithelium where EPHB2 labelled proliferative cells reside at the crypt base and ERBB3+ve cells mark differentiated cells at the top of crypts. Our results show that ERBB3 and intestinal stem cell markers correlate in colorectal cancers. ERBB3 localises to differentiated cell populations within tumours that are non-proliferative and distinct from cancer stem cells. These data support the concept that tumours contain discrete stem, proliferative and differentiation compartments similar to that present in normal crypts.
Alternate Grainy head isoforms regulate Drosophila midgut intestinal stem cell differentiation
Regeneration of the Drosophila midgut epithelium depends upon differential expression of transcription factors in intestinal stem cells and their progeny. The grainy head locus produces multiple splice forms that result in production of two classes of transcription factor, designated Grh.O and Grh.N. grainy head expression is associated with epithelial tissue and has roles in epidermal development and regeneration but had not been examined for a function in the midgut epithelium. Here we show that null mutant clones had a limited effect on intestinal stem cell (ISC) maintenance and proliferation but surprisingly specific loss of all Grh.O isoforms results in loss of ISCs from the epithelium. This was confirmed by generation of a new Grh.O class mutant to control for genetic background effects. Grh.O mutant ISCs were not lost due to cell death but were forced to differentiate. Ectopic expression of a Grh.N isoform also resulted in ISC differentiation similar to loss of Grh.O function. Grh.O expression must be tightly regulated as high level ectopic expression of a member of this isoform class in enteroblasts, but not ISCs, resulted in cells with confused identity and promoted excess proliferation in the epithelium. Thus, midgut regeneration is not only dependent upon signalling pathways that regulate transcription factor expression, but also upon regulated mRNA splicing of these genes.