Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Accolla, M."
Sort by:
n-Alkanes formed by methyl-methylene addition as a source of meteoritic aliphatics
Aliphatics prevail in asteroids, comets, meteorites and other bodies in our solar system. They are also found in the interstellar and circumstellar media both in gas-phase and in dust grains. Among aliphatics, linear alkanes ( n -C n H 2n+2 ) are known to survive in carbonaceous chondrites in hundreds to thousands of parts per billion, encompassing sequences from CH 4 to n -C 31 H 64 . Despite being systematically detected, the mechanism responsible for their formation in meteorites has yet to be identified. Based on advanced laboratory astrochemistry simulations, we propose a gas-phase synthesis mechanism for n-alkanes starting from carbon and hydrogen under conditions of temperature and pressure that mimic those found in carbon-rich circumstellar envelopes. We characterize the analogs generated in a customized sputter gas aggregation source using a combination of atomically precise scanning tunneling microscopy, non-contact atomic force microscopy and ex-situ gas chromatography-mass spectrometry. Within the formed carbon nanostructures, we identify the presence of n -alkanes with sizes ranging from n -C 8 H 18 to n -C 32 H 66 . Ab-initio calculations of formation free energies, kinetic barriers, and kinetic chemical network modelling lead us to propose a gas-phase growth mechanism for the formation of large n -alkanes based on methyl-methylene addition (MMA). In this process, methylene serves as both a reagent and a catalyst for carbon chain growth. Our study provides evidence of an aliphatic gas-phase synthesis mechanism around evolved stars and provides a potential explanation for its presence in interstellar dust and meteorites. Extraterrestrial organic matter found in meteorites may hold a unique record of its synthesis, and chemical and thermal alterations in the parent body, however, the origin of such aliphatics remains enigmatic. Here, the authors propose sequential gas-phase methyl-methylene addition growth of n -C 8 H 18 to n -C 32 H 66 alkanes based on a series of sputter gas aggregation source experiments and DFT calculations.
Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun
Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency’s Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10 −10 to 10 −7 kilograms, and 48 grains of mass 10 −5 to 10 −2 kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.
Quantum tunneling of oxygen atoms on very cold surfaces
Any evolving system can change of state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at sub-monolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite of the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.
Gas temperature dependent sticking of hydrogen on cold amorphous water ice surfaces of interstellar interest
Using the King & Wells method, we present experimental data on the dependence of the sticking of molecular hydrogen and deuterium on the beam temperature onto non- porous amorphous solid water (ASW) ice surfaces of interstellar interest. A statistical model that explains the isotopic effect and the beam temperature behavior of our data is proposed. This model gives an understanding of the discrepancy between all known experimental results on the sticking of molecular hydrogen. Moreover it is able to fit the theoretical results of V. Buch et al. [Astrophys. J. (1991), 379, 647] on atomic hydrogen and deuterium. For astrophysical applications, an analytical formula for the sticking coefficients of H, D, H2, D2 and HD in the case of a gas phase at thermal equilibrium is also provided at the end of the article.
Experimental evidence for water formation via ozone hydrogenation on dust grains at 10 K
The formation of water molecules from the reaction between ozone (O3) and D-atoms is studied experimentally for the first time. Ozone is deposited on non-porous amorphous solid water ice (H2O), and D-atoms are then sent onto the sample held at 10 K. HDO molecules are detected during the desorption of the whole substrate where isotope mixing takes place, indicating that water synthesis has occurred. The efficiency of water formation via hydrogenation of ozone is of the same order of magnitude of that found for reactions involving O atoms or O2 molecules and exhibits no apparent activation barrier. These experiments validate the assumption made by models using ozone as one of the precursors of water formation via solid-state chemistry on interstellar dust grains.
Differential retention contributes to racial/ethnic disparity in U.S. academia
Several racial and ethnic identities are widely understood to be under-represented within academia, however, actual quantification of this under-representation is surprisingly limited. Challenges include data availability, demographic inertia and identifying comparison points. We use de-aggregated data from the U.S. National Science Foundation to construct a null model of ethnic and racial representation in one of the world’s largest academic communities. Making comparisons between our model and actual representation in academia allows us to measure the effects of retention (while controlling for recruitment) at different academic stages. We find that, regardless of recruitment, failed retention contributes to mis-representation across academia and that the stages responsible for the largest disparities differ by race and ethnicity: for Black and Hispanic scholars this occurs at the transition from graduate student to postdoctoral researcher whereas for Native American/Alaskan Native and Native Hawaiian/Pacific Islander scholars this occurs at transitions to and within faculty stages. Even for Asian and Asian-Americans, often perceived as well represented, circumstances are complex and depend on choice of baseline. Our findings demonstrate that while recruitment continues to be important, retention is also a pervasive barrier to proportional representation. Therefore, strategies to reduce mis-representation in academia must address retention. Although our model does not directly suggest specific strategies, our framework could be used to project how representation in academia might change in the long-term under different scenarios.
Humoral and Cellular Immune Response Elicited by the BNT162b2 COVID-19 Vaccine Booster in Elderly
Although the safety and efficacy of COVID-19 vaccines in older people are critical to their success, little is known about their immunogenicity among elderly residents of long-term care facilities (LTCFs). A single-center prospective cohort study was conducted: a total IgG antibody titer, neutralizing antibodies against Wild-type, Delta Plus, and Omicron BA.2 variants and T cell response, were measured eight months after the second dose of BNT162b2 vaccine (T0) and at least 15 days after the booster (T1). Forty-nine LTCF residents, with a median age of 84.8 ± 10.6 years, were enrolled. Previous COVID-19 infection was documented in 42.9% of the subjects one year before T0. At T1, the IgG titers increased up to 10-fold. This ratio was lower in the subjects with previous COVID-19 infection. At T1, IgG levels were similar in both groups. The neutralizing activity against Omicron BA.2 was significantly lower (65%) than that measured against Wild-type and Delta Plus (90%). A significant increase of T cell-specific immune response was observed after the booster. Frailty, older age, sex, cognitive impairment, and comorbidities did not affect antibody titers or T cell response. In the elderly sample analyzed, the BNT162b2 mRNA COVID-19 vaccine produced immunogenicity regardless of frailty.
Stoichiometric Ecotoxicology for a Multisubstance World
Nutritional and contaminant stressors influence organismal physiology, trophic interactions, community structure, and ecosystem-level processes; however, the interactions between toxicity and elemental imbalance in food resources have been examined in only a few ecotoxicity studies. Integrating well-developed ecological theories that cross all levels of biological organization can enhance our understanding of ecotoxicology. In the present article, we underline the opportunity to couple concepts and approaches used in the theory of ecological stoichiometry (ES) to ask ecotoxicological questions and introduce stoichiometric ecotoxicology, a subfield in ecology that examines how contaminant stress, nutrient supply, and elemental constraints interact throughout all levels of biological organization. This conceptual framework unifying ecotoxicology with ES offers potential for both empirical and theoretical studies to deepen our mechanistic understanding of the adverse outcomes of chemicals across ecological scales and improve the predictive powers of ecotoxicology.
Different levels of control prevent interferon-γ-inducible HLA-class II expression in human neuroblastoma cells
The HLA class II expression is controlled by the transcriptional activator CIITA. The transcription of CIITA is controlled by different promoters, among which promoter-IV is inducible by IFN- γ . We analysed the regulation of HLA class II molecules by IFN- γ in a large series of human neuroblastoma cell lines. No induction of surface or intracellular HLA class II molecules and of specific mRNA was observed, in all neuroblastomas, with the exception of a nonprototypic cell line, ACN. In a large subset of neuroblastomas IFN- γ induced expression of CIITA mRNA, derived from promoter-IV, which was not methylated. In contrast, in another subset of neuroblastomas, CIITA was not inducible by IFN- γ and CIITA promoter-IV was either completely or partially methylated. Interestingly, the use of DNA demethylating agents restored CIITA gene transcriptional activation by IFN- γ , but not HLA class II expression. The defect of HLA class II was not related to alterations in RFX or NF-Y transcription factors, as suggested by EMSA or RFX gene transfection experiments. In addition, the transfection of a functional CIITA cDNA failed to induce HLA class II expression in typical neuroblastoma cells. Confocal microscopy and Western blot analysis suggested a defective nuclear translocation and/or reduced protein synthesis in CIITA-transfected NB cells. Altogether, these data point to multiple mechanisms preventing HLA class II expression in the neuroblastoma, either involving CIITA promoter-IV silencing, or acting at the CIITA post-transcriptional level.
Photocleavage of aliphatic C--C bonds in the interstellar medium
Ultraviolet (UV) processing in the insterstellar medium (ISM) induces the dehydrogenation of hydrocarbons. Aliphatics, including alkanes, are present in different interstellar environments, being prevalently formed in evolved stars; thus, the dehydrogenation by UV photoprocessing of alkanes plays an important role in the chemistry of the ISM, leading to the formation of unsaturated hydrocarbons and eventually to aromatics, the latter ubiquitously detected in the ISM. Here, through combined experimental results and \\textit{ab-initio} calculations, we show that UV absorption (mainly at the Ly-\\(\\alpha\\) emission line of hydrogen at 121.6 nm) promotes an alkane to an excited Rydberg state from where it evolves towards fragmentation inducing the formation of olefinic C=C bonds, which are necessary precursors of aromatic hydrocarbons. We show that photochemistry of aliphatics in the ISM does not primarily produce direct hydrogen elimination but preferential C-C photocleavage. Our results provide an efficient synthetic route for the formation of unsaturated aliphatics, including propene and dienes, and suggest that aromatics could be formed in dark clouds by a bottom-up mechanism involving molecular fragments produced by UV photoprocessing of aliphatics.