Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
59 result(s) for "Achim, Cristian L."
Sort by:
Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet
Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.
Impact of Combined Antiretroviral Treatment (cART) on Latent Cytomegalovirus Infection
Cytomegalovirus infections and reactivations are more frequent in people living with HIV (PLWH) and have been associated with increased risk of HIV progression and immunosenescence. We explored the impact of combination antiretroviral therapy (cART) on latent CMV infection in 225 young adults parenterally infected with HIV during childhood. Anti-CMV IgG antibodies were present in 93.7% of participants, with lower levels correlating with longer cART exposure and better immunologic parameters. Patients with immunological treatment success (CD4 > 350 cells/mL) had significantly lower CMV IgG titers compared to those with suboptimal immune response to cART. In total, 78% of the tested patients had robust CMV-specific T-cell responses, measured by an IFN-γ release assay. A good immune response to treatment was significantly associated with CMV-specific cellular immunity: IFN-γ level was positively correlated with CD4 and CD8-T cell counts. No differences were observed between patients with suppressed/non-suppressed HIV viremia in terms of CMV humoral and cellular immune response. CMV DNA was detected in only 17% of participants, with lower levels among those with cART-induced immune recovery. The successful antiretroviral treatment with subsequent immunologic reconstitution may lead to restoration of CMV-specific immune responses and effective control of latent infection, limiting episodes of CMV reactivation in HIV-positive individuals.
Subacute myoclonic measles encephalitis – An opportunistic HIV-associated infection
An unusual cluster of myoclonic epilepsy was observed in a Romanian pediatric HIV cohort concurrent with measles outbreaks. We describe this particular form of subacute measles encephalitis (SME) in a group of HIV-infected children and adolescents with severe immunosuppression. This is a single-center study, starting in 1997 and covering 4 measles outbreaks in Romania. The presumptive diagnosis of subacute myoclonic measles encephalitis (SMME) was based on: (1) epidemiological data, previous measles episode or presumed contact with measles virus (MV), (2) clinical presentation with initial localized myoclonic jerks with rapid extension and subsequent motor deficit with preserved mental status, and (3) neuroimaging studies revealing cortical gray matter lesions. Definitive diagnosis was based on a neuropathological exam and immunohistochemistry of brain tissues, and measles RNA detection in the cerebrospinal fluid (CSF). Thirty-six patients were diagnosed with a particular form of SME during consecutive measles outbreaks in Romania: 1996-1998 (22); 2005-2008 (12); 2010-2011 (1) and 2016-2018 (1). Most children were born in the late 80s and had parenterally acquired HIV infection in early childhood. Before the episode of SMME, 11 patients had confirmed measles, while the rest, without typical rash, had a respiratory tract infection and/or presumed previous measles contact. In all patients, the clinical onset was sudden, with unilateral myoclonus. MRI findings revealed mainly focal cortical gray matter lesions. Neurologic symptoms progressed rapidly to coma and death in most patients. Three patients survived SMME, they had higher CD4 count at onset, slower progression of neurological symptoms, and benefit of immune recovery with cART. Immunocytochemistry studies revealed MV in the brain with a pattern suggesting an ascending viral neural infection. MV was isolated from CSF in 7 out of 8 patients. Sequence analysis of MV RNA from both nasopharyngeal swabs and CSF was available for one patient with similar N-450 strain characteristics. During an outbreak of measles, neurological manifestations, especially myoclonus in immunosuppressed patients, can be related to measles even in the absence of an acute episode. This particular form of subacute myoclonic measles encephalitis is an opportunistic fatal disease. Immune recovery due to effective antiretroviral treatment might increase survival.
Pathogenesis of age-related HIV neurodegeneration
People over the age of 50 are the fastest growing segment of the HIV-infected population in the USA. Although antiretroviral therapy has remarkable success controlling the systemic HIV infection, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group, and cognitive deficits appear more severe in aged patients with HIV. The mechanisms of HAND in the aged population are not completely understood; a leading hypothesis is that aged individuals with HIV might be at higher risk of developing Alzheimer’s disease (AD) or one of the AD-related dementias (ADRD). There are a number of mechanisms through which chronic HIV disease alone or in combination with antiretroviral therapy and other comorbidities (e.g., drug use, hepatitis C virus (HCV)) might be contributing to HAND in individuals over the age of 50 years, including (1) overlapping pathogenic mechanisms between HIV and aging (e.g., decreased proteostasis, DNA damage, chronic inflammation, epigenetics, vascular), which could lead to accelerated cellular aging and neurodegeneration and/or (2) by promoting pathways involved in AD/ADRD neuropathogenesis (e.g., triggering amyloid β, Tau, or α-synuclein accumulation). In this manuscript, we will review some of the potential common mechanisms involved and evidence in favor and against a role of AD/ADRD in HAND.
Short-Term Recognition Memory Correlates with Regional CNS Expression of microRNA-138 in Mice
Objectives We hypothesized that microRNA (miR) expression may be involved in memory function because it controls local protein translation at synapses and dendritic spines. Design Case-control animal study. Methods We assessed the miR repertoire in the hippocampus of young, 6-month-old (N = 18) mice compared with aged, 26-month-old (N = 23) mice and compared miR quantity to memory scores as determined by the novel object recognition task. We performed a histological brain regional analysis of miR-138, acyl protein thioesterase 1 (APT1) mRNA, and APT1 protein. Results We found that higher miR-138 expression in the mouse hippocampus is correlated with better memory performance. We also found that APT1 (a depalmytoylation enzyme expressed at dendritic spines whose translation is controlled by miR-138) mRNA is increased in the mouse hippocampal CA1 and dentate gyrus in aged mice compared with young mice, but not in mice with memory impairment. We found APT1 protein distribution to be lower in cells with high miR-138 expression. Conclusions These results suggest that increased miR-138 is associated with better memory and increased APT1 gene transcription occurs with aging. The role of miR-138 and APT1 protein function in memory and aging warrants further investigation.
Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-Infected Brain: Novel Analysis of Retrospective Cases
HIV infection disturbs the central nervous system (CNS) through inflammation and glial activation. Evidence suggests roles for microRNA (miRNA) in host defense and neuronal homeostasis, though little is known about miRNAs' role in HIV CNS infection. MiRNAs are non-coding RNAs that regulate gene translation through post-transcriptional mechanisms. Messenger-RNA profiling alone is insufficient to elucidate the dynamic dance of molecular expression of the genome. We sought to clarify RNA alterations in the frontal cortex (FC) of HIV-infected individuals and those concurrently infected and diagnosed with major depressive disorder (MDD). This report is the first published study of large-scale miRNA profiling from human HIV-infected FC. The goals of this study were to: 1. Identify changes in miRNA expression that occurred in the frontal cortex (FC) of HIV individuals, 2. Determine whether miRNA expression profiles of the FC could differentiate HIV from HIV/MDD, and 3. Adapt a method to meaningfully integrate gene expression data and miRNA expression data in clinical samples. We isolated RNA from the FC (n = 3) of three separate groups (uninfected controls, HIV, and HIV/MDD) and then pooled the RNA within each group for use in large-scale miRNA profiling. RNA from HIV and HIV/MDD patients (n = 4 per group) were also used for non-pooled mRNA analysis on Affymetrix U133 Plus 2.0 arrays. We then utilized a method for integrating the two datasets in a Target Bias Analysis. We found miRNAs of three types: A) Those with many dysregulated mRNA targets of less stringent statistical significance, B) Fewer dysregulated target-genes of highly stringent statistical significance, and C) unclear bias. In HIV/MDD, more miRNAs were downregulated than in HIV alone. Specific miRNA families at targeted chromosomal loci were dysregulated. The dysregulated miRNAs clustered on Chromosomes 14, 17, 19, and X. A small subset of dysregulated genes had many 3' untranslated region (3'UTR) target-sites for dysregulated miRNAs. We provide evidence that certain miRNAs serve as key elements in gene regulatory networks in HIV-infected FC and may be implicated in neurobehavioral disorder. Finally, our data indicates that some genes may serve as hubs of miRNA activity.
Modulation of BK Channel by MicroRNA-9 in Neurons After Exposure to HIV and Methamphetamine
MicroRNAs (miR) regulate phenotype and function of neurons by binding to miR-response elements (MRE) in the 3′ untranslated regions (3′UTR) of various messenger RNAs to inhibit translation. MiR expression can be induced or inhibited by environmental factors like drug exposure and viral infection, leading to changes in cellular physiology. We hypothesized that the effects of methamphetamine (MA) and human immunodeficiency virus (HIV)-infection in the brain will induce changes in miR expression, and have downstream regulatory consequences in neurons. We first used a PCR-based array to screen for differential expression of 380 miRs in frontal cortex autopsy tissues of HIV-positive MA abusers and matched controls. These results showed significantly increased expression of the neuron-specific miR-9. In vitro, we used SH-SY5Y cells, an experimental system for dopaminergic studies, to determine miR expression by quantitative PCR after exposure to MA in the presence or absence of conditioned media from HIV-infected macrophages. Again, we found that miR-9 was significantly increased compared to controls. We also examined the inwardly rectifying potassium channel, KCNMA1, which has alternative splice variants that contain an MRE to miR-9. We identified alternate 3′UTRs of KCNMA1 both in vitro and in the autopsy specimens and found differential splice variant expression of KCNMA1, operating via the increased miR-9. Our results suggest that HIV and MA -induced elevated miR-9, leading to suppression of MRE-containing splice variants of KCNMA1, which may affect neurotransmitter release in dopaminergic neurons.
Blood-Brain Barrier Tight Junction Disruption in Human Immunodeficiency Virus-1 Encephalitis
The blood-brain barrier (BBB) plays a critical role in regulating cell trafficking through the central nervous system (CNS) due to several unique anatomical features, including the presence of interendothelial tight junctions that form impermeable seals between the cells. Previous studies have demonstrated BBB perturbations during human immunodeficiency virus encephalitis (HIVE); however, the basis of these permeability changes and its relationship to infiltration of human immunodeficiency virus type 1 (HIV-1)-infected monocytes, a critical event in the pathogenesis of the disease, remains unclear. In this study, we examined CNS tissue from HIV-1-seronegative patients and HIV-1-infected patients, both with and without encephalitis, for alterations in BBB integrity via immunohistochemical analysis of the tight junction membrane proteins, occludin and zonula occludens-1 (ZO-1). Significant tight junction disruption ( P < 0.001), as demonstrated by fragmentation or absence of immunoreactivity for occludin and ZO-1, was observed within vessels from subcortical white matter, basal ganglia, and, to a lesser extent, cortical gray matter in patients who died with HIVE. These alterations were also associated with accumulation of activated, HIV-1-infected brain macrophages, fibrinogen leakage, and marked astrocytosis. In contrast, no significant changes ( P > 0.05) were observed in cerebellar tissue from patients with HIVE compared to HIV-seronegative patients or HIV-1-infected patients without encephalitis. Our findings demonstrate that tight junction disruption is a key feature of HIVE that occurs in regions of histopathological alterations in association with perivascular accumulation of activated HIV-1-infected macrophages, serum protein extravasation, and marked astrocytosis. We propose that disruption of this key BBB structure serves as the main route of HIV-1-infected monocyte entry into the CNS.
Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders
HIV infection leads to age-related conditions in relatively young persons. HIV-associated neurocognitive disorders (HAND) are considered among the most prevalent of these conditions. To study the mechanisms underlying this disorder, researchers need an accurate method for measuring biological aging. Here, we apply a recently developed measure of biological aging, based on DNA methylation, to the study of biological aging in HIV+ brains. Retrospective analysis of tissue bank specimens and pre-mortem data was carried out. Fifty-eight HIV+ adults underwent a medical and neurocognitive evaluation within 1 year of death. DNA was obtained from occipital cortex and analyzed with the Illumina Infinium Human Methylation 450K platform. Biological age determined via the epigenetic clock was contrasted with chronological age to obtain a measure of age acceleration, which was then compared between those with HAND and neurocognitively normal individuals. The HAND and neurocognitively normal groups did not differ with regard to demographic, histologic, neuropathologic, or virologic variables. HAND was associated with accelerated aging relative to neurocognitively normal individuals, with average relative acceleration of 3.5 years. Age acceleration did not correlate with pre-mortem neurocognitive functioning or HAND severity. This is the first study to demonstrate that the epigenetic age of occipital cortex samples is associated with HAND status in HIV+ individuals pre-mortem. While these results suggest that the increased risk of a neurocognitive disorder due to HIV might be mediated by an epigenetic aging mechanism, future studies will be needed to validate the findings and dissect causal relationships and downstream effects.
Phosphorylation of collapsin response mediator protein-2 disrupts neuronal maturation in a model of adult neurogenesis: Implications for neurodegenerative disorders
Background Recent studies suggest that the pathogenic process in neurodegenerative disorders may disrupt mature neuronal circuitries and neurogenesis in the adult brain. Abnormal activation of CDK5 is associated with neurodegenerative disorders, and recently a critical role for CDK5 in adult neurogenesis has been identified. We have developed an in vitro model of abnormal CDK5 activation during adult hippocampal neurogenesis, and here we used this model to investigate aberrantly phosphorylated downstream targets of CDK5. Results Abnormal CDK5 activation in an in vitro model of adult neurogenesis results in hyperphosphorylation of collapsin-response mediator protein-2 (CRMP2) and impaired neurite outgrowth. Inhibition of CDK5, or expression of a non-phosphorylatable (S522A) CRMP2 construct reduced CRMP2 hyperphosphorylation, and reversed neurite outgrowth deficits. CRMP2 plays a role in microtubule dynamics; therefore we examined the integrity of microtubules in this model using biochemical and electron microscopy techniques. We found that microtubule organization was disrupted under conditions of CDK5 activation. Finally, to study the relevance of these findings to neurogenesis in neurodegenerative conditions associated with HIV infection, we performed immunochemical analyses of the brains of patients with HIV and transgenic mice expressing HIV-gp120 protein. CDK5-mediated CRMP2 phosphorylation was significantly increased in the hippocampus of patients with HIV encephalitis and in gp120 transgenic mice, and this effect was rescued by genetic down-modulation of CDK5 in the mouse model. Conclusions These results reveal a functional mechanism involving microtubule destabilization through which abnormal CDK5 activation and CRMP2 hyperphosphorylation might contribute to defective neurogenesis in neurodegenerative disorders such as HIV encephalitis.