Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"Adachi, Noritaka"
Sort by:
Non-homologous DNA end joining and alternative pathways to double-strand break repair
by
Chang, Howard H. Y.
,
Pannunzio, Nicholas R.
,
Adachi, Noritaka
in
631/208/211
,
631/337/1427/2122
,
631/337/1427/2191
2017
Key Points
Mammalian non-homologous DNA end joining (NHEJ) is the primary pathway for the repair of DNA double-strand breaks (DSBs) throughout the cell cycle, including during S and G2 phases.
NHEJ relies on the Ku protein to thread onto each broken DNA end. Ku recruits the enzymes and complexes that are needed to trim (nucleases) or to fill in (polymerases) the ends to make them optimally ligatable by the DNA ligase IV complex.
The configuration of the DNA ends determines which of several subpathways of NHEJ is able to join the ends. Because NHEJ is flexible and iterative, any of these subpathways can be used but some pathways are more efficient than others for certain DNA ends.
When NHEJ is absent owing to a lack of Ku or the DNA ligase complex, alternative end joining (a-EJ) can join the ends using microhomology (usually >4 bp) and there is often some evidence of templated insertions of substantial length (>10 nucleotides). DNA polymerase θ (Pol θ) is of key importance for a-EJ.
The single-strand annealing (SSA) pathway requires further end resection by exonuclease 1 (EXO1), Bloom syndrome RecQ-like helicase (BLM) or DNA replication helicase/nuclease 2 (DNA2) to generate the long 3′ single-strand DNA (ssDNA) tails (>20 nucleotides) that are bound by replication protein A (RPA) to prevent the formation of DNA secondary structures. The 3′ ssDNA tails are annealed by RAD52.
In mammalian cells, DNA double-strand breaks (DSBs) are repaired predominantly by the non-homologous end joining (NHEJ) pathway, which includes subpathways that can repair different DNA-end configurations. Furthermore, the repair of some DNA-end configurations can be shunted to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA).
DNA double-strand breaks (DSBs) are the most dangerous type of DNA damage because they can result in the loss of large chromosomal regions. In all mammalian cells, DSBs that occur throughout the cell cycle are repaired predominantly by the non-homologous DNA end joining (NHEJ) pathway. Defects in NHEJ result in sensitivity to ionizing radiation and the ablation of lymphocytes. The NHEJ pathway utilizes proteins that recognize, resect, polymerize and ligate the DNA ends in a flexible manner. This flexibility permits NHEJ to function on a wide range of DNA-end configurations, with the resulting repaired DNA junctions often containing mutations. In this Review, we discuss the most recent findings regarding the relative involvement of the different NHEJ proteins in the repair of various DNA-end configurations. We also discuss the shunting of DNA-end repair to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA) and the relevance of these different pathways to human disease.
Journal Article
Characterization and regulation of cell cycle-independent noncanonical gene targeting
2024
Homology-dependent targeted DNA integration, generally referred to as gene targeting, provides a powerful tool for precise genome modification; however, its fundamental mechanisms remain poorly understood in human cells. Here we reveal a noncanonical gene targeting mechanism that does not rely on the homologous recombination (HR) protein Rad51. This mechanism is suppressed by Rad52 inhibition, suggesting the involvement of single-strand annealing (SSA). The SSA-mediated gene targeting becomes prominent when DSB repair by HR or end-joining pathways is defective and does not require isogenic DNA, permitting 5% sequence divergence. Intriguingly, loss of Msh2, loss of BLM, and induction of a target-site DNA break all significantly and synergistically enhance SSA-mediated targeted integration. Most notably, SSA-mediated integration is cell cycle-independent, occurring in the G1 phase as well. Our findings provide unequivocal evidence for Rad51-independent targeted integration and unveil multiple mechanisms to regulate SSA-mediated targeted as well as random integration.
The precise mechanism of human gene targeting is not completely understood. Here, the authors characterize the regulation of noncanonical homologous DNA integration that requires neither Rad51 nor isogenic DNA in cell cycle-independent manner.
Journal Article
Dual loss of human POLQ and LIG4 abolishes random integration
2017
Homologous recombination-mediated gene targeting has greatly contributed to genetic analysis in a wide range of species, but is highly inefficient in human cells because of overwhelmingly frequent random integration events, whose molecular mechanism remains elusive. Here we show that DNA polymerase θ, despite its minor role in chromosomal DNA repair, substantially contributes to random integration, and that cells lacking both DNA polymerase θ and DNA ligase IV, which is essential for non-homologous end joining (NHEJ), exhibit 100% efficiency of spontaneous gene targeting by virtue of undetectable levels of random integration. Thus, DNA polymerase θ-mediated end joining is the sole homology-independent repair route in the absence of NHEJ and, intriguingly, their combined absence reveals rare
Alu
-
Alu
recombination events utilizing a stretch of homology. Our findings provide new insights into the mechanics of foreign DNA integration and the role of DNA polymerase θ in human genome maintenance.
Homologous recombination mediated gene targeting is highly inefficient in human cells due to random integration events, Here the authors show that dual repression of polymerase θ and DNA ligase IV eliminate random integration events.
Journal Article
Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues
by
Sefton, Elizabeth M
,
Tesarova, Marketa
,
Kaiser, Jozef
in
Connective tissues
,
cranial mesoderm
,
Defects
2018
In vertebrates, head and trunk muscles develop from different mesodermal populations and are regulated by distinct genetic networks. Neck muscles at the head-trunk interface remain poorly defined due to their complex morphogenesis and dual mesodermal origins. Here, we use genetically modified mice to establish a 3D model that integrates regulatory genes, cell populations and morphogenetic events that define this transition zone. We show that the evolutionary conserved cucullaris-derived muscles originate from posterior cardiopharyngeal mesoderm, not lateral plate mesoderm, and we define new boundaries for neural crest and mesodermal contributions to neck connective tissue. Furthermore, lineage studies and functional analysis of Tbx1- and Pax3-null mice reveal a unique developmental program for somitic neck muscles that is distinct from that of somitic trunk muscles. Our findings unveil the embryological and developmental requirements underlying tetrapod neck myogenesis and provide a blueprint to investigate how muscle subsets are selectively affected in some human myopathies.
Journal Article
HR eye & MMR eye: one-day assessment of DNA repair-defective tumors eligible for targeted therapy
2025
Homologous recombination (HR) and mismatch repair (MMR) act as guardians of the human genome, and defects in HR or MMR are causative in at least a quarter of all malignant tumors. Although these DNA repair-deficient tumors are eligible for effective targeted therapies, fully reliable diagnostic strategies based on functional assay have yet to be established, potentially limiting safe and proper application of the molecular targeted drugs. Here we show that transient transfection of artificial DNA substrates enables ultrarapid detection of HR and MMR. This finding led us to develop a diagnostic strategy that can determine the cellular HR/MMR status within one day without the need for control cells or tissues. Notably, the accuracy of this method allowed the discovery of a pathogenic
RAD51D
mutation, which was missed by existing companion diagnostic tests. Our methods, termed HR eye and MMR eye, are applicable to frozen tumor tissues and roughly predict the response to therapy. Overall, the findings presented here could pave the way for accurately assessing malignant tumors with functional defects in HR or MMR, a step forward in accelerating precision medicine.
DNA repair-deficient tumours are eligible for effective targeted therapies, but reliable diagnostic strategies based on functional assays are needed. Here the authors develop methods for the rapid assessment of homologous recombination and mismatch repair status in tumor tissues, allowing drug efficacy to be predicted.
Journal Article
Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain
2016
The brain of the hagfish, a cyclostome related to the lamprey, develops domains equivalent to the median ganglionic eminence and the rhombic lip, resembling the brains of gnathostomes (jawed vertebrates), suggesting that brain regionalization in jawed vertebrates occurred before the divergence of cyclostomes and gnathostomes more than 500 million years ago.
The early vertebrate brain revisited
The brains of vertebrates are much more complex than those of their immediate invertebrate relations — tunicates and the amphioxus — raising questions about the origins and development of the brain. The jawless lamprey, an ancient vertebrate, was also thought to have a primitive 'ancestral' brain. In particular, the embryonic lamprey was thought to have characteristics resembling those of mutant mice lacking a structure called the medial ganglionic eminence (MGE). Shigeru Kuratani and colleagues now show that the hagfish, a close relative of the lamprey, develops domains equivalent to the MGE and also the rhombic lip, resembling the brains of jawed vertebrates (gnathostomes). A closer look at lampreys reveals that they too have similar structures. These findings suggest that brain regionalization as seen in jawed vertebrates dates back to the latest vertebrate ancestor prior to the divergence of cyclostomes and gnathostomes more than 500 million years ago.
The vertebrate brain is highly complex, but its evolutionary origin remains elusive. Because of the absence of certain developmental domains generally marked by the expression of regulatory genes, the embryonic brain of the lamprey, a jawless vertebrate, had been regarded as representing a less complex, ancestral state of the vertebrate brain. Specifically, the absence of a
Hedgehog-
and
Nkx2.1
-positive domain in the lamprey subpallium was thought to be similar to mouse mutants in which the suppression of
Nkx2-1
leads to a loss of the medial ganglionic eminence
1
,
2
. Here we show that the brain of the inshore hagfish (
Eptatretus burgeri
), another cyclostome group, develops domains equivalent to the medial ganglionic eminence and rhombic lip, resembling the gnathostome brain. Moreover, further investigation of lamprey larvae revealed that these domains are also present, ruling out the possibility of convergent evolution between hagfish and gnathostomes. Thus, brain regionalization as seen in crown gnathostomes is not an evolutionary innovation of this group, but dates back to the latest vertebrate ancestor before the divergence of cyclostomes and gnathostomes more than 500 million years ago.
Journal Article
Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity
by
Smith, Kayleigh
,
Austin, Caroline A.
,
Lee, Ka Cheong
in
Biological Sciences
,
Cell lines
,
Cell nucleus
2012
Topoisomerase poisons such as the epipodophyllotoxin etoposide are widely used effective cytotoxic anticancer agents. However, they are associated with the development of therapy-related acute myeloid leukemias (t-AMLs), which display characteristic balanced chromosome translocations, most often involving the mixed lineage leukemia (MLL) locus at 11q23. MLL translocation breakpoints in t-AMLs cluster in a DNase I hypersensitive region, which possesses cryptic promoter activity, implicating transcription as well as topoisomerase II activity in the translocation mechanism. We find that 2-3% of MLL alleles undergoing transcription do so in close proximity to one of its recurrent translocation partner genes, AF9 or AF4, consistent with their sharing transcription factories. We show that most etoposide-induced chromosome breaks in the MLL locus and the overall genotoxicity of etoposide are dependent on topoisomerase IIβ, but that topoisomerase lia and -β occupancy and etoposide-induced DNA cleavage data suggest factors other than local topoisomerase II concentration determine specific clustering of MLL translocation breakpoints in t-AML. We propose a model where DNA double-strand breaks (DSBs) introduced by topoisomerase IIβ into pairs of genes undergoing transcription within a common transcription factory become stabilized by antitopoisomerase II drugs such as etoposide, providing the opportunity for illegitimate end joining and translocation.
Journal Article
Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates
2018
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8–6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.
Genomic resources for cartilaginous fishes are scarce. Here, the authors sequence the genome of three sharks and provide insights on the molecular basis of adaptation to underwater lifestyle and the evolutionary origins of vertebrates.
Journal Article
Mutations in XRCC4 cause primordial dwarfism without causing immunodeficiency
by
Kurosawa, Aya
,
Saito, Shinta
,
Adachi, Noritaka
in
Animals
,
Disease Susceptibility
,
DNA End-Joining Repair
2016
In successive reports from 2014 to 2015, X-ray repair cross-complementing protein 4 (XRCC4) has been identified as a novel causative gene of primordial dwarfism. XRCC4 is indispensable for non-homologous end joining (NHEJ), the major pathway for repairing DNA double-strand breaks. As NHEJ is essential for V(D)J recombination during lymphocyte development, it is generally believed that abnormalities in XRCC4 cause severe combined immunodeficiency. Contrary to expectations, however, no overt immunodeficiency has been observed in patients with primordial dwarfism harboring XRCC4 mutations. Here, we describe the various XRCC4 mutations that lead to disease and discuss their impact on NHEJ and V(D)J recombination.
Journal Article
The evolutionary origins and diversity of the neuromuscular system of paired appendages in batoids
2019
Appendage patterning and evolution have been active areas of inquiry for the past two centuries. While most work has centred on the skeleton, particularly that of amniotes, the evolutionary origins and molecular underpinnings of the neuromuscular diversity of fish appendages have remained enigmatic. The fundamental pattern of segmentation in amniotes, for example, is that all muscle precursors and spinal nerves enter either the paired appendages or body wall at the same spinal level. The condition in finned vertebrates is not understood. To address this gap in knowledge, we investigated the development of muscles and nerves in unpaired and paired fins of skates and compared them to those of chain catsharks. During skate and shark embryogenesis, cell populations of muscle precursors and associated spinal nerves at the same axial level contribute to both appendages and body wall, perhaps representing an ancestral condition of gnathostome appendicular neuromuscular systems. Remarkably in skates, this neuromuscular bifurcation as well as colinear Hox expression extend posteriorly to pattern a broad paired fin domain. In addition, we identified migratory muscle precursors (MMPs), which are known to develop into paired appendage muscles with Pax3 and Lbx1 gene expression, in the dorsal fins of skates. Our results suggest that muscles of paired fins have evolved via redeployment of the genetic programme of MMPs that were already involved in dorsal fin development. Appendicular neuromuscular systems most likely have emerged as side branches of body wall neuromusculature and have been modified to adapt to distinct aquatic and terrestrial habitats.
Journal Article