Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
77 result(s) for "Adegoke, Catherine A"
Sort by:
Effect of the Affordable Medicines Facility—malaria (AMFm) on the availability, price, and market share of quality-assured artemisinin-based combination therapies in seven countries: a before-and-after analysis of outlet survey data
Malaria is one of the greatest causes of mortality worldwide. Use of the most effective treatments for malaria remains inadequate for those in need, and there is concern over the emergence of resistance to these treatments. In 2010, the Global Fund launched the Affordable Medicines Facility—malaria (AMFm), a series of national-scale pilot programmes designed to increase the access and use of quality-assured artemisinin based combination therapies (QAACTs) and reduce that of artemisinin monotherapies for treatment of malaria. AMFm involves manufacturer price negotiations, subsidies on the manufacturer price of each treatment purchased, and supporting interventions such as communications campaigns. We present findings on the effect of AMFm on QAACT price, availability, and market share, 6–15 months after the delivery of subsidised ACTs in Ghana, Kenya, Madagascar, Niger, Nigeria, Uganda, and Tanzania (including Zanzibar). We did nationally representative baseline and endpoint surveys of public and private sector outlets that stock antimalarial treatments. QAACTs were identified on the basis of the Global Fund's quality assurance policy. Changes in availability, price, and market share were assessed against specified success benchmarks for 1 year of AMFm implementation. Key informant interviews and document reviews recorded contextual factors and the implementation process. In all pilots except Niger and Madagascar, there were large increases in QAACT availability (25·8–51·9 percentage points), and market share (15·9–40·3 percentage points), driven mainly by changes in the private for-profit sector. Large falls in median price for QAACTs per adult equivalent dose were seen in the private for-profit sector in six pilots, ranging from US$1·28 to $4·82. The market share of oral artemisinin monotherapies decreased in Nigeria and Zanzibar, the two pilots where it was more than 5% at baseline. Subsidies combined with supporting interventions can be effective in rapidly improving availability, price, and market share of QAACTs, particularly in the private for-profit sector. Decisions about the future of AMFm should also consider the effect on use in vulnerable populations, access to malaria diagnostics, and cost-effectiveness. The Global Fund to Fight AIDS, Tuberculosis and Malaria, and the Bill & Melinda Gates Foundation.
Communicating the AMFm message: exploring the effect of communication and training interventions on private for-profit provider awareness and knowledge related to a multi-country anti-malarial subsidy intervention
Background The Affordable Medicines Facility - malaria (AMFm), implemented at national scale in eight African countries or territories, subsidized quality-assured artemisinin combination therapy (ACT) and included communication campaigns to support implementation and promote appropriate anti-malarial use. This paper reports private for-profit provider awareness of key features of the AMFm programme, and changes in provider knowledge of appropriate malaria treatment. Methods This study had a non-experimental design based on nationally representative surveys of outlets stocking anti-malarials before (2009/10) and after (2011) the AMFm roll-out. Results Based on data from over 19,500 outlets, results show that in four of eight settings, where communication campaigns were implemented for 5–9 months, 76%-94% awareness of the AMFm ‘green leaf’ logo, 57%-74% awareness of the ACT subsidy programme, and 52%-80% awareness of the correct recommended retail price (RRP) of subsidized ACT were recorded. However, in the remaining four settings where communication campaigns were implemented for three months or less, levels were substantially lower. In six of eight settings, increases of at least 10 percentage points in private for-profit providers’ knowledge of the correct first-line treatment for uncomplicated malaria were seen; and in three of these the levels of knowledge achieved at endline were over 80%. Conclusions The results support the interpretation that, in addition to the availability of subsidized ACT, the intensity of communication campaigns may have contributed to the reported levels of AMFm-related awareness and knowledge among private for-profit providers. Future subsidy programmes for anti-malarials or other treatments should similarly include communication activities.
Effect of the Affordable Medicines Facilityamalaria (AMFm) on the availability, price, and market share of quality-assured artemisinin-based combination therapies in seven countries: a before-and-after analysis of outlet survey data
Malaria is one of the greatest causes of mortality worldwide. Use of the most effective treatments for malaria remains inadequate for those in need, and there is concern over the emergence of resistance to these treatments. In 2010, the Global Fund launched the Affordable Medicines Facilityamalaria (AMFm), a series of national-scale pilot programmes designed to increase the access and use of quality-assured artemisinin based combination therapies (QAACTs) and reduce that of artemisinin monotherapies for treatment of malaria. AMFm involves manufacturer price negotiations, subsidies on the manufacturer price of each treatment purchased, and supporting interventions such as communications campaigns. We present findings on the effect of AMFm on QAACT price, availability, and market share, 6a15 months after the delivery of subsidised ACTs in Ghana, Kenya, Madagascar, Niger, Nigeria, Uganda, and Tanzania (including Zanzibar). Methods: We did nationally representative baseline and endpoint surveys of public and private sector outlets that stock antimalarial treatments. QAACTs were identified on the basis of the Global Fund's quality assurance policy. Changes in availability, price, and market share were assessed against specified success benchmarks for 1 year of AMFm implementation. Key informant interviews and document reviews recorded contextual factors and the implementation process.
Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
Overweight and obesity is a global epidemic. Forecasting future trajectories of the epidemic is crucial for providing an evidence base for policy change. In this study, we examine the historical trends of the global, regional, and national prevalence of adult overweight and obesity from 1990 to 2021 and forecast the future trajectories to 2050. Leveraging established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study, we estimated the prevalence of overweight and obesity among individuals aged 25 years and older by age and sex for 204 countries and territories from 1990 to 2050. Retrospective and current prevalence trends were derived based on both self-reported and measured anthropometric data extracted from 1350 unique sources, which include survey microdata and reports, as well as published literature. Specific adjustment was applied to correct for self-report bias. Spatiotemporal Gaussian process regression models were used to synthesise data, leveraging both spatial and temporal correlation in epidemiological trends, to optimise the comparability of results across time and geographies. To generate forecast estimates, we used forecasts of the Socio-demographic Index and temporal correlation patterns presented as annualised rate of change to inform future trajectories. We considered a reference scenario assuming the continuation of historical trends. Rates of overweight and obesity increased at the global and regional levels, and in all nations, between 1990 and 2021. In 2021, an estimated 1·00 billion (95% uncertainty interval [UI] 0·989–1·01) adult males and 1·11 billion (1·10–1·12) adult females had overweight and obesity. China had the largest population of adults with overweight and obesity (402 million [397–407] individuals), followed by India (180 million [167–194]) and the USA (172 million [169–174]). The highest age-standardised prevalence of overweight and obesity was observed in countries in Oceania and north Africa and the Middle East, with many of these countries reporting prevalence of more than 80% in adults. Compared with 1990, the global prevalence of obesity had increased by 155·1% (149·8–160·3) in males and 104·9% (95% UI 100·9–108·8) in females. The most rapid rise in obesity prevalence was observed in the north Africa and the Middle East super-region, where age-standardised prevalence rates in males more than tripled and in females more than doubled. Assuming the continuation of historical trends, by 2050, we forecast that the total number of adults living with overweight and obesity will reach 3·80 billion (95% UI 3·39–4·04), over half of the likely global adult population at that time. While China, India, and the USA will continue to constitute a large proportion of the global population with overweight and obesity, the number in the sub-Saharan Africa super-region is forecasted to increase by 254·8% (234·4–269·5). In Nigeria specifically, the number of adults with overweight and obesity is forecasted to rise to 141 million (121–162) by 2050, making it the country with the fourth-largest population with overweight and obesity. No country to date has successfully curbed the rising rates of adult overweight and obesity. Without immediate and effective intervention, overweight and obesity will continue to increase globally. Particularly in Asia and Africa, driven by growing populations, the number of individuals with overweight and obesity is forecast to rise substantially. These regions will face a considerable increase in obesity-related disease burden. Merely acknowledging obesity as a global health issue would be negligent on the part of global health and public health practitioners; more aggressive and targeted measures are required to address this crisis, as obesity is one of the foremost avertible risks to health now and in the future and poses an unparalleled threat of premature disease and death at local, national, and global levels. Bill & Melinda Gates Foundation.
Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
Despite the well documented consequences of obesity during childhood and adolescence and future risks of excess body mass on non-communicable diseases in adulthood, coordinated global action on excess body mass in early life is still insufficient. Inconsistent measurement and reporting are a barrier to specific targets, resource allocation, and interventions. In this Article we report current estimates of overweight and obesity across childhood and adolescence, progress over time, and forecasts to inform specific actions. Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. Between 1990 and 2021, the combined prevalence of overweight and obesity in children and adolescents doubled, and that of obesity alone tripled. By 2021, 93·1 million (95% uncertainty interval 89·6–96·6) individuals aged 5–14 years and 80·6 million (78·2–83·3) aged 15–24 years had obesity. At the super-region level in 2021, the prevalence of overweight and of obesity was highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and the greatest increase from 1990 to 2021 was seen in southeast Asia, east Asia, and Oceania (eg, Taiwan [province of China], Maldives, and China). By 2021, for females in both age groups, many countries in Australasia (eg, Australia) and in high-income North America (eg, Canada) had already transitioned to obesity predominance, as had males and females in a number of countries in north Africa and the Middle East (eg, United Arab Emirates and Qatar) and Oceania (eg, Cook Islands and American Samoa). From 2022 to 2050, global increases in overweight (not obesity) prevalence are forecasted to stabilise, yet the increase in the absolute proportion of the global population with obesity is forecasted to be greater than between 1990 and 2021, with substantial increases forecast between 2022 and 2030, which continue between 2031 and 2050. By 2050, super-region obesity prevalence is forecasted to remain highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and forecasted increases in obesity are still expected to be largest across southeast Asia, east Asia, and Oceania (eg, Timor-Leste and North Korea), but also in south Asia (eg, Nepal and Bangladesh). Compared with those aged 15–24 years, in most super-regions (except Latin America and the Caribbean and the high-income super-region) a greater proportion of those aged 5–14 years are forecasted to have obesity than overweight by 2050. Globally, 15·6% (12·7–17·2) of those aged 5–14 years are forecasted to have obesity by 2050 (186 million [141–221]), compared with 14·2% (11·4–15·7) of those aged 15–24 years (175 million [136–203]). We forecasted that by 2050, there will be more young males (aged 5–14 years) living with obesity (16·5% [13·3–18·3]) than overweight (12·9% [12·2–13·6]); while for females (aged 5–24 years) and older males (aged 15–24 years), overweight will remain more prevalent than obesity. At a regional level, the following populations are forecast to have transitioned to obesity (vs overweight) predominance before 2041–50: children and adolescents (males and females aged 5–24 years) in north Africa and the Middle East and Tropical Latin America; males aged 5–14 years in east Asia, central and southern sub-Saharan Africa, and central Latin America; females aged 5–14 years in Australasia; females aged 15–24 years in Australasia, high-income North America, and southern sub-Saharan Africa; and males aged 15–24 years in high-income North America. Both overweight and obesity increased substantially in every world region between 1990 and 2021, suggesting that current approaches to curbing increases in overweight and obesity have failed a generation of children and adolescents. Beyond 2021, overweight during childhood and adolescence is forecast to stabilise due to further increases in the population who have obesity. Increases in obesity are expected to continue for all populations in all world regions. Because substantial change is forecasted to occur between 2022 and 2030, immediate actions are needed to address this public health crisis. Bill & Melinda Gates Foundation and Australian National Health and Medical Research Council.
Yoruba culture and the resilience of HIV-positive adolescent girls in Nigeria
Although there is a growing body of research exploring the influence of culture on the resilience of African youth, few studies have examined how culture constrains or enables resilience among HIV-positive adolescent girls from the perspective of the young women themselves. This paper reports on the findings from a qualitative study of five purposively selected girls living with HIV in Ibadan, Nigeria. By analysing data drawn mainly from interviews and observations, we explored how cultural influences promote or limit resilience in participants. Social-ecological resilience theory was used to document and interpret the findings. While some cultural values and perceptions enable resilience, others constrain participants’ resilience trajectories. However, the girls were able to navigate through these constraints using their cultural identities and coping strategies, such as future dreams, emotional and physical resources linked to spirituality and networks of friends and families. Findings have implications for policymakers, researchers and programmers in strengthening the health and resilience of young people in the face of HIV.
Global, regional, and national trends in routine childhood vaccination coverage from 1980 to 2023 with forecasts to 2030: a systematic analysis for the Global Burden of Disease Study 2023
Since its inception in 1974, the Essential Programme on Immunization (EPI) has achieved remarkable success, averting the deaths of an estimated 154 million children worldwide through routine childhood vaccination. However, more recent decades have seen persistent coverage inequities and stagnating progress, which have been further amplified by the COVID-19 pandemic. In 2019, WHO set ambitious goals for improving vaccine coverage globally through the Immunization Agenda 2030 (IA2030). Now halfway through the decade, understanding past and recent coverage trends can help inform and reorient strategies for approaching these aims in the next 5 years. Based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2023, this study provides updated global, regional, and national estimates of routine childhood vaccine coverage from 1980 to 2023 for 204 countries and territories for 11 vaccine-dose combinations recommended by WHO for all children globally. Employing advanced modelling techniques, this analysis accounts for data biases and heterogeneity and integrates new methodologies to model vaccine scale-up and COVID-19 pandemic-related disruptions. To contextualise historic coverage trends and gains still needed to achieve the IA2030 coverage targets, we supplement these results with several secondary analyses: (1) we assess the effect of the COVID-19 pandemic on vaccine coverage; (2) we forecast coverage of select life-course vaccines up to 2030; and (3) we analyse progress needed to reduce the number of zero-dose children by half between 2023 and 2030. Overall, global coverage for the original EPI vaccines against diphtheria, tetanus, and pertussis (first dose [DTP1] and third dose [DTP3]), measles (MCV1), polio (Pol3), and tuberculosis (BCG) nearly doubled from 1980 to 2023. However, this long-term trend masks recent challenges. Coverage gains slowed between 2010 and 2019 in many countries and territories, including declines in 21 of 36 high-income countries and territories for at least one of these vaccine doses (excluding BCG, which has been removed from routine immunisation schedules in some countries and territories). The COVID-19 pandemic exacerbated these challenges, with global rates for these vaccines declining sharply since 2020, and still not returning to pre-COVID-19 pandemic levels as of 2023. Coverage for newer vaccines developed and introduced in more recent years, such as immunisations against pneumococcal disease (PCV3) and rotavirus (complete series; RotaC) and a second dose of the measles vaccine (MCV2), saw continued increases globally during the COVID-19 pandemic due to ongoing introductions and scale-ups, but at slower rates than expected in the absence of the pandemic. Forecasts to 2030 for DTP3, PCV3, and MCV2 suggest that only DTP3 would reach the IA2030 target of 90% global coverage, and only under an optimistic scenario. The number of zero-dose children, proxied as children younger than 1 year who do not receive DTP1, decreased by 74·9% (95% uncertainty interval 72·1–77·3) globally between 1980 and 2019, with most of those declines reached during the 1980s and the 2000s. After 2019, counts of zero-dose children rose to a COVID 19-era peak of 18·6 million (17·6–20·0) in 2021. Most zero-dose children remain concentrated in conflict-affected regions and those with various constraints on resources available to put towards vaccination services, particularly sub-Saharan Africa. As of 2023, more than 50% of the 15·7 million (14·6–17·0) global zero-dose children resided in just eight countries (Nigeria, India, Democratic Republic of the Congo, Ethiopia, Somalia, Sudan, Indonesia, and Brazil), emphasising persistent inequities. Our estimates of current vaccine coverage and forecasts to 2030 suggest that achieving IA2030 targets, such as halving zero-dose children compared with 2019 levels and reaching 90% global coverage for life-course vaccines DTP3, PCV3, and MCV2, will require accelerated progress. Substantial increases in coverage are necessary in many countries and territories, with those in sub-Saharan Africa and south Asia facing the greatest challenges. Recent declines will need to be reversed to restore previous coverage levels in Latin America and the Caribbean, especially for DTP1, DTP3, and Pol3. These findings underscore the crucial need for targeted, equitable immunisation strategies. Strengthening primary health-care systems, addressing vaccine misinformation and hesitancy, and adapting to local contexts are essential to advancing coverage. COVID-19 pandemic recovery efforts, such as WHO's Big Catch-Up, as well as efforts to bolster routine services must prioritise reaching marginalised populations and target subnational geographies to regain lost ground and achieve global immunisation goals. The Bill & Melinda Gates Foundation and Gavi, the Vaccine Alliance.
The global, regional, and national burden of cancer, 1990–2023, with forecasts to 2050: a systematic analysis for the Global Burden of Disease Study 2023
Cancer is a leading cause of death globally. Accurate cancer burden information is crucial for policy planning, but many countries do not have up-to-date cancer surveillance data. To inform global cancer-control efforts, we used the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 framework to generate and analyse estimates of cancer burden for 47 cancer types or groupings by age, sex, and 204 countries and territories from 1990 to 2023, cancer burden attributable to selected risk factors from 1990 to 2023, and forecasted cancer burden up to 2050. Cancer estimation in GBD 2023 used data from population-based cancer registration systems, vital registration systems, and verbal autopsies. Cancer mortality was estimated using ensemble models, with incidence informed by mortality estimates and mortality-to-incidence ratios (MIRs). Prevalence estimates were generated from modelled survival estimates, then multiplied by disability weights to estimate years lived with disability (YLDs). Years of life lost (YLLs) were estimated by multiplying age-specific cancer deaths by the GBD standard life expectancy at the age of death. Disability-adjusted life-years (DALYs) were calculated as the sum of YLLs and YLDs. We used the GBD 2023 comparative risk assessment framework to estimate cancer burden attributable to 44 behavioural, environmental and occupational, and metabolic risk factors. To forecast cancer burden from 2024 to 2050, we used the GBD 2023 forecasting framework, which included forecasts of relevant risk factor exposures and used Socio-demographic Index as a covariate for forecasting the proportion of each cancer not affected by these risk factors. Progress towards the UN Sustainable Development Goal (SDG) target 3.4 aim to reduce non-communicable disease mortality by a third between 2015 and 2030 was estimated for cancer. In 2023, excluding non-melanoma skin cancers, there were 18·5 million (95% uncertainty interval 16·4 to 20·7) incident cases of cancer and 10·4 million (9·65 to 10·9) deaths, contributing to 271 million (255 to 285) DALYs globally. Of these, 57·9% (56·1 to 59·8) of incident cases and 65·8% (64·3 to 67·6) of cancer deaths occurred in low-income to upper-middle-income countries based on World Bank income group classifications. Cancer was the second leading cause of deaths globally in 2023 after cardiovascular diseases. There were 4·33 million (3·85 to 4·78) risk-attributable cancer deaths globally in 2023, comprising 41·7% (37·8 to 45·4) of all cancer deaths. Risk-attributable cancer deaths increased by 72·3% (57·1 to 86·8) from 1990 to 2023, whereas overall global cancer deaths increased by 74·3% (62·2 to 86·2) over the same period. The reference forecasts (the most likely future) estimate that in 2050 there will be 30·5 million (22·9 to 38·9) cases and 18·6 million (15·6 to 21·5) deaths from cancer globally, 60·7% (41·9 to 80·6) and 74·5% (50·1 to 104·2) increases from 2024, respectively. These forecasted increases in deaths are greater in low-income and middle-income countries (90·6% [61·0 to 127·0]) compared with high-income countries (42·8% [28·3 to 58·6]). Most of these increases are likely due to demographic changes, as age-standardised death rates are forecast to change by –5·6% (–12·8 to 4·6) between 2024 and 2050 globally. Between 2015 and 2030, the probability of dying due to cancer between the ages of 30 years and 70 years was forecasted to have a relative decrease of 6·5% (3·2 to 10·3). Cancer is a major contributor to global disease burden, with increasing numbers of cases and deaths forecasted up to 2050 and a disproportionate growth in burden in countries with scarce resources. The decline in age-standardised mortality rates from cancer is encouraging but insufficient to meet the SDG target set for 2030. Effectively and sustainably addressing cancer burden globally will require comprehensive national and international efforts that consider health systems and context in the development and implementation of cancer-control strategies across the continuum of prevention, diagnosis, and treatment. Gates Foundation, St Jude Children's Research Hospital, and St Baldrick's Foundation.
Global burden of 292 causes of death in 204 countries and territories and 660 subnational locations, 1990–2023: a systematic analysis for the Global Burden of Disease Study 2023
Timely and comprehensive analyses of causes of death stratified by age, sex, and location are essential for shaping effective health policies aimed at reducing global mortality. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 provides cause-specific mortality estimates measured in counts, rates, and years of life lost (YLLs). GBD 2023 aimed to enhance our understanding of the relationship between age and cause of death by quantifying the probability of dying before age 70 years (70q0) and the mean age at death by cause and sex. This study enables comparisons of the impact of causes of death over time, offering a deeper understanding of how these causes affect global populations. GBD 2023 produced estimates for 292 causes of death disaggregated by age-sex-location-year in 204 countries and territories and 660 subnational locations for each year from 1990 until 2023. We used a modelling tool developed for GBD, the Cause of Death Ensemble model (CODEm), to estimate cause-specific death rates for most causes. We computed YLLs as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. Probability of death was calculated as the chance of dying from a given cause in a specific age period, for a specific population. Mean age at death was calculated by first assigning the midpoint age of each age group for every death, followed by computing the mean of all midpoint ages across all deaths attributed to a given cause. We used GBD death estimates to calculate the observed mean age at death and to model the expected mean age across causes, sexes, years, and locations. The expected mean age reflects the expected mean age at death for individuals within a population, based on global mortality rates and the population's age structure. Comparatively, the observed mean age represents the actual mean age at death, influenced by all factors unique to a location-specific population, including its age structure. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 250-draw distribution for each metric. Findings are reported as counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2023 include a correction for the misclassification of deaths due to COVID-19, updates to the method used to estimate COVID-19, and updates to the CODEm modelling framework. This analysis used 55 761 data sources, including vital registration and verbal autopsy data as well as data from surveys, censuses, surveillance systems, and cancer registries, among others. For GBD 2023, there were 312 new country-years of vital registration cause-of-death data, 3 country-years of surveillance data, 51 country-years of verbal autopsy data, and 144 country-years of other data types that were added to those used in previous GBD rounds. The initial years of the COVID-19 pandemic caused shifts in long-standing rankings of the leading causes of global deaths: it ranked as the number one age-standardised cause of death at Level 3 of the GBD cause classification hierarchy in 2021. By 2023, COVID-19 dropped to the 20th place among the leading global causes, returning the rankings of the leading two causes to those typical across the time series (ie, ischaemic heart disease and stroke). While ischaemic heart disease and stroke persist as leading causes of death, there has been progress in reducing their age-standardised mortality rates globally. Four other leading causes have also shown large declines in global age-standardised mortality rates across the study period: diarrhoeal diseases, tuberculosis, stomach cancer, and measles. Other causes of death showed disparate patterns between sexes, notably for deaths from conflict and terrorism in some locations. A large reduction in age-standardised rates of YLLs occurred for neonatal disorders. Despite this, neonatal disorders remained the leading cause of global YLLs over the period studied, except in 2021, when COVID-19 was temporarily the leading cause. Compared to 1990, there has been a considerable reduction in total YLLs in many vaccine-preventable diseases, most notably diphtheria, pertussis, tetanus, and measles. In addition, this study quantified the mean age at death for all-cause mortality and cause-specific mortality and found noticeable variation by sex and location. The global all-cause mean age at death increased from 46·8 years (95% UI 46·6–47·0) in 1990 to 63·4 years (63·1–63·7) in 2023. For males, mean age increased from 45·4 years (45·1–45·7) to 61·2 years (60·7–61·6), and for females it increased from 48·5 years (48·1–48·8) to 65·9 years (65·5–66·3), from 1990 to 2023. The highest all-cause mean age at death in 2023 was found in the high-income super-region, where the mean age for females reached 80·9 years (80·9–81·0) and for males 74·8 years (74·8–74·9). By comparison, the lowest all-cause mean age at death occurred in sub-Saharan Africa, where it was 38·0 years (37·5–38·4) for females and 35·6 years (35·2–35·9) for males in 2023. Lastly, our study found that all-cause 70q0 decreased across each GBD super-region and region from 2000 to 2023, although with large variability between them. For females, we found that 70q0 notably increased from drug use disorders and conflict and terrorism. Leading causes that increased 70q0 for males also included drug use disorders, as well as diabetes. In sub-Saharan Africa, there was an increase in 70q0 for many non-communicable diseases (NCDs). Additionally, the mean age at death from NCDs was lower than the expected mean age at death for this super-region. By comparison, there was an increase in 70q0 for drug use disorders in the high-income super-region, which also had an observed mean age at death lower than the expected value. We examined global mortality patterns over the past three decades, highlighting—with enhanced estimation methods—the impacts of major events such as the COVID-19 pandemic, in addition to broader trends such as increasing NCDs in low-income regions that reflect ongoing shifts in the global epidemiological transition. This study also delves into premature mortality patterns, exploring the interplay between age and causes of death and deepening our understanding of where targeted resources could be applied to further reduce preventable sources of mortality. We provide essential insights into global and regional health disparities, identifying locations in need of targeted interventions to address both communicable and non-communicable diseases. There is an ever-present need for strengthened health-care systems that are resilient to future pandemics and the shifting burden of disease, particularly among ageing populations in regions with high mortality rates. Robust estimates of causes of death are increasingly essential to inform health priorities and guide efforts toward achieving global health equity. The need for global collaboration to reduce preventable mortality is more important than ever, as shifting burdens of disease are affecting all nations, albeit at different paces and scales. Gates Foundation.
Global age-sex-specific all-cause mortality and life expectancy estimates for 204 countries and territories and 660 subnational locations, 1950–2023: a demographic analysis for the Global Burden of Disease Study 2023
Comprehensive, comparable, and timely estimates of demographic metrics—including life expectancy and age-specific mortality—are essential for evaluating, understanding, and addressing trends in population health. The COVID-19 pandemic highlighted the importance of timely and all-cause mortality estimates for being able to respond to changing trends in health outcomes, showing a strong need for demographic analysis tools that can produce all-cause mortality estimates more rapidly with more readily available all-age vital registration (VR) data. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) is an ongoing research effort that quantifies human health by estimating a range of epidemiological quantities of interest across time, age, sex, location, cause, and risk. This study—part of the latest GBD release, GBD 2023—aims to provide new and updated estimates of all-cause mortality and life expectancy for 1950 to 2023 using a novel statistical model that accounts for complex correlation structures in demographic data across age and time. We used 24 025 data sources from VR, sample registration, surveys, censuses, and other sources to estimate all-cause mortality for males, females, and all sexes combined across 25 age groups in 204 countries and territories as well as 660 subnational units in 20 countries and territories, for the years 1950–2023. For the first time, we used complete birth history data for ages 5–14 years, age-specific sibling history data for ages 15–49 years, and age-specific mortality data from Health and Demographic Surveillance Systems. We developed a single statistical model that incorporates both parametric and non-parametric methods, referred to as OneMod, to produce estimates of all-cause mortality for each age-sex-location group. OneMod includes two main steps: a detailed regression analysis with a generalised linear modelling tool that accounts for age-specific covariate effects such as the Socio-demographic Index (SDI) and a population attributable fraction (PAF) for all risk factors combined; and a non-parametric analysis of residuals using a multivariate kernel regression model that smooths across age and time to adaptably follow trends in the data without overfitting. We calibrated asymptotic uncertainty estimates using Pearson residuals to produce 95% uncertainty intervals (UIs) and corresponding 1000 draws. Life expectancy was calculated from age-specific mortality rates with standard demographic methods. For each measure, 95% UIs were calculated with the 25th and 975th ordered values from a 1000-draw posterior distribution. In 2023, 60·1 million (95% UI 59·0–61·1) deaths occurred globally, of which 4·67 million (4·59–4·75) were in children younger than 5 years. Due to considerable population growth and ageing since 1950, the number of annual deaths globally increased by 35·2% (32·2–38·4) over the 1950–2023 study period, during which the global age-standardised all-cause mortality rate declined by 66·6% (65·8–67·3). Trends in age-specific mortality rates between 2011 and 2023 varied by age group and location, with the largest decline in under-5 mortality occurring in east Asia (67·7% decrease); the largest increases in mortality for those aged 5–14 years, 25–29 years, and 30–39 years occurring in high-income North America (11·5%, 31·7%, and 49·9%, respectively); and the largest increases in mortality for those aged 15–19 years and 20–24 years occurring in Eastern Europe (53·9% and 40·1%, respectively). We also identified higher than previously estimated mortality rates in sub-Saharan Africa for all sexes combined aged 5–14 years (87·3% higher in GBD 2023 than GBD 2021 on average across countries and territories over the 1950–2021 period) and for females aged 15–29 years (61·2% higher), as well as lower than previously estimated mortality rates in sub-Saharan Africa for all sexes combined aged 50 years and older (13·2% lower), reflecting advances in our modelling approach. Global life expectancy followed three distinct trends over the study period. First, between 1950 and 2019, there were considerable improvements, from 51·2 (50·6–51·7) years for females and 47·9 (47·4–48·4) years for males in 1950 to 76·3 (76·2–76·4) years for females and 71·4 (71·3–71·5) years for males in 2019. Second, this period was followed by a decrease in life expectancy during the COVID-19 pandemic, to 74·7 (74·6–74·8) years for females and 69·3 (69·2–69·4) years for males in 2021. Finally, the world experienced a period of post-pandemic recovery in 2022 and 2023, wherein life expectancy generally returned to pre-pandemic (2019) levels in 2023 (76·3 [76·0–76·6] years for females and 71·5 [71·2–71·8] years for males). 194 (95·1%) of 204 countries and territories experienced at least partial post-pandemic recovery in age-standardised mortality rates by 2023, with 61·8% (126 of 204) recovering to or falling below pre-pandemic levels. There were several mortality trajectories during and following the pandemic across countries and territories. Long-term mortality trends also varied considerably between age groups and locations, demonstrating the diverse landscape of health outcomes globally. This analysis identified several key differences in mortality trends from previous estimates, including higher rates of adolescent mortality, higher rates of young adult mortality in females, and lower rates of mortality in older age groups in much of sub-Saharan Africa. The findings also highlight stark differences across countries and territories in the timing and scale of changes in all-cause mortality trends during and following the COVID-19 pandemic (2020–23). Our estimates of evolving trends in mortality and life expectancy across locations, ages, sexes, and SDI levels in recent years as well as over the entire 1950–2023 study period provide crucial information for governments, policy makers, and the public to ensure that health-care systems, economies, and societies are prepared to address the world's health needs, particularly in populations with higher rates of mortality than previously known. The estimates from this study provide a robust framework for GBD and a valuable foundation for policy development, implementation, and evaluation around the world. Gates Foundation.