Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
70
result(s) for
"Adelman, Zach N."
Sort by:
CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes
2020
Aedes aegypti is a vector of dengue, chikungunya, and Zika viruses. Current vector control strategies such as community engagement, source reduction, and insecticides have not been sufficient to prevent viral outbreaks. Thus, interest in novel strategies involving genetic engineering is growing. Female mosquitoes rely on flight to mate with males and obtain a bloodmeal from a host. We hypothesized that knockout of genes specifically expressed in female mosquitoes associated with the indirect flight muscles would result in a flightless female mosquito. Using CRISPR-Cas9 we generated loss-of-function mutations in several genes hypothesized to control flight in mosquitoes, including actin ( AeAct-4 ) and myosin ( myo-fem ) genes expressed specifically in the female flight muscle. Genetic knockout of these genes resulted in 100% flightless females, with homozygous males able to fly, mate, and produce offspring, albeit at a reduced rate when compared to wild type males. Interestingly, we found that while AeAct-4 was haplosufficient, with most heterozygous individuals capable of flight, this was not the case for myo-fem , where about half of individuals carrying only one intact copy could not fly. These findings lay the groundwork for developing novel mechanisms of controlling Ae . aegypti populations, and our results suggest that this mechanism could be applicable to other vector species of mosquito.
Journal Article
Evaluating the specificity of flavivirus proteases in Aedes aegypti cells for dengue virus 2-derived cleavage sites
2024
Flaviviruses are a diverse group of RNA viruses known for their significant impact on human health worldwide. We generated a series of reporters that included cleavage sequences from the dengue virus type 2 polyprotein and co-transfected with plasmids encoding various flavivirus proteases into Aedes aegypti cells, followed by fluorescent imaging and western blot analysis for the determination of proteolytic cleavage. Recombinant flavivirus NS2B3 proteases from medically significant and insect-specific flaviviruses were able to process reporters encoding cleavage sequences from the dengue virus type 2 polyprotein in vitro including proteases from dengue virus types 1–4, Zika virus, yellow fever virus, Aedes flavivirus, and cell-fusing agent virus. Reporters were not cleaved when transfected cells were infected with dengue virus type 2. Endoplasmic reticulum tethered reporters were also cleaved by protease alone but not by infectious virus. These results shed light on the ability of multiple flavivirus proteases to cleave sequences derived from outside of their genome and raise new questions concerning the requirements for effective cleavage by flavivirus proteases in trans .
Journal Article
Production of Virus-Derived Ping-Pong-Dependent piRNA-like Small RNAs in the Mosquito Soma
by
Morazzani, Elaine M.
,
Adelman, Zach N.
,
Murreddu, Marta G.
in
Alphavirus
,
Alphavirus - physiology
,
Alphavirus Infections - genetics
2012
The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs). However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication.
Journal Article
Transcriptomic analyses of Aedes aegypti cultured cells and ex vivo midguts in response to an excess or deficiency of heme: a quest for transcriptionally-regulated heme transporters
2020
Background
Aedes aegypti
is the principle vector of many arboviruses, including dengue virus and Zika virus, which are transmitted when an infected female mosquito takes a blood meal in order to initiate vitellogenesis. During blood digestion, ~ 10 mM heme-iron is ingested into the midgut lumen. While heme acts as both a nutrient and signaling molecule during blood digestion, it can also be highly toxic if left unchaperoned. Both signaling by, and degradation of, heme are intracellular processes, occurring in the nucleus and cytoplasm, respectively. However, the precise mechanism of heme uptake into the midgut epithelium is not currently known.
Results
We used next generation RNA sequencing with the goal to identify genes that code for membrane bound heme import protein(s) responsible for heme uptake into the midgut epithelium. Heme deprivation increased uptake of a heme fluorescent analog in cultured cells, while treatment of midguts with an excess of heme decreased uptake, confirming physiological changes were occurring in these heme-sensitive cells/tissues prior to sequencing. A list of candidate genes was assembled for each of the experimental sample sets, which included Aag2 and A20 cultured cells as well as midgut tissue, based on the results of a differential expression analysis, soft cluster analysis and number of predicted transmembrane domains. Lastly, the functions related to heme transport were examined through RNAi knockdown.
Conclusions
Despite a large number of transmembrane domain containing genes differentially expressed in response to heme, very few were highly differentially expressed in any of the datasets examined. RNAi knockdown of a subset of candidates resulted in subtle changes in heme uptake, but minimal overall disruption to blood digestion/egg production. These results could indicate that heme import in
Ae. aegypti
may be controlled by a redundant system of multiple distinct transport proteins. Alternatively, heme membrane bound transport in
Ae. aegypti
could be regulated post-translationally.
Journal Article
Effects of circadian clock disruption on gene expression and biological processes in Aedes aegypti
by
Adelman, Zach N.
,
Shetty, Vinaya
,
Slotman, Michel A.
in
Aedes aegypti
,
Animal Genetics and Genomics
,
Aquatic insects
2024
Background
This study explores the impact of disrupting the circadian clock through a
Cycle
gene knockout (KO) on the transcriptome of
Aedes aegypti
mosquitoes. The investigation aims to uncover the resulting alterations in gene expression patterns and physiological processes.
Results
Transcriptome analysis was conducted on
Cyc
knockout (
AeCyc
-/-
) and wild-type mosquitoes at four time points in a light-dark cycle. The study identified system-driven genes that exhibit rhythmic expression independently of the core clock machinery.
Cyc
disruption led to altered expression of essential clock genes, affecting metabolic processes, signaling pathways, stimulus responses and immune responses. Notably, gene ontology enrichment of odorant binding proteins, indicating the clock's role in sensory perception. The absence of
Cyc
also impacted various regulation of metabolic and cell cycle processes was observed in all time points.
Conclusions
The intricate circadian regulation in
Ae. aegypti
encompasses both core clock-driven and system-driven genes. The KO of
Cyc
gene instigated extensive gene expression changes, impacting various processes, thereby potentially affecting cellular and metabolic functions, immune responses, and sensory perception. The circadian clock's multifaceted involvement in diverse biological processes, along with its role in the mosquito's daily rhythms, forms a nexus that influences the vector's capacity to transmit diseases. These insights shed light on the circadian clock's role in shaping mosquito biology and behavior, opening new avenues for innovative disease control strategies.
Journal Article
Partial masculinization of Aedes aegypti females by conditional expression of Nix
2022
Background Aedes aegypti, the main vector of dengue, yellow fever, and other arboviruses thrives in tropical and subtropical areas around the globe putting half of the world's population at risk. Despite aggressive efforts to control the transmission of those viruses, an unacceptable number of cases occur every year, emphasizing the need to develop new control strategies. Proposals for vector control focused on population suppression could offer a feasible alternative method to reduce disease transmission. The induction of extreme male-biased sex ratios has been hypothesized to be able to suppress or collapse a population, with previous experiments showing that stable expression of the male determining factor Nix in A. aegypti is sufficient to convert females into fertile males. Methodology/Principal findings Here, we report on the conditional expression of Nix in transgenic A. aegypti under the control of the tetracycline-dependent (Tet-off) system, with the goal of establishing repressible sex distortion. A masculinization phenotype was observed in three of the seven transgenic lines with females exhibiting male-like long maxillary palps and most importantly, the masculinized females were unable to blood feed. Doxycycline treatment of the transgenic lines only partially restored the normal phenotype from the masculinized transgenic lines, while RT-qPCR analysis of early embryos or adults showed no correlation between the level of masculinization and ectopic Nix expression. Conclusions/Significance While the conditional expression of Nix produced intersex phenotypes, the level of expression was insufficient to program full conversion. Modifications that increase both the level of activation (no tet) and the level of repression (with tet) will be necessary, as such this study represents one step forward in the development of genetic strategies to control vector-borne diseases via sex ratio distortion.
Journal Article
Strategies to improve homology-based repair outcomes following CRISPR-based gene editing in mosquitoes: lessons in how to keep any repair disruptions local
2022
Programmable gene editing systems such as CRISPR-Cas have made mosquito genome engineering more practical and accessible, catalyzing the development of cutting-edge genetic methods of disease vector control. This progress, however, has been limited by the low efficiency of homology-directed repair (HDR)-based sequence integration at DNA double-strand breaks (DSBs) and a lack of understanding about DSB repair in mosquitoes. Innovative efforts to optimize HDR sequence integration by inhibiting non-homologous end joining or promoting HDR have been performed in mammalian systems, however many of these approaches have not been applied to mosquitoes. Here, we review some of the most relevant steps of DNA DSB repair choice and highlight promising approaches that influence this choice to enhance HDR in the context of mosquito gene editing.
Journal Article
Repeat mediated excision of gene drive elements for restoring wild-type populations
2024
Here, we demonstrate that single strand annealing (SSA) can be co-opted for the precise autocatalytic excision of a drive element. We have termed this technology Re peat M ediated E xcision of a D rive E lement (ReMEDE). By engineering direct repeats flanking the drive allele and inducing a double-strand DNA break (DSB) at a second endonuclease target site within the allele, we increased the utilization of SSA repair. ReMEDE was incorporated into the mutagenic chain reaction (MCR) gene drive targeting the yellow gene of Drosophila melanogaster , successfully replacing drive alleles with wild-type alleles. Sequencing across the Cas9 target site confirmed transgene excision by SSA after pair-mated outcrosses with yReMEDE females, revealing ~4% inheritance of an engineered silent TcG marker sequence. However, phenotypically wild-type flies with alleles of indeterminate biogenesis also were observed, retaining the TGG sequence (~16%) or harboring a silent gGG mutation (~0.5%) at the PAM site. Additionally, ~14% of alleles in the F2 flies were intact or uncut paternally inherited alleles, indicating limited maternal deposition of Cas9 RNP. Although ReMEDE requires further research and development, the technology has some promising features as a gene drive mitigation strategy, notably its potential to restore wild-type populations without additional transgenic releases or large-scale environmental modifications.
Journal Article
Characterization of the adult Aedes aegypti early midgut peritrophic matrix proteome using LC-MS
by
Adelman, Zach N.
,
Whiten, Shavonn R.
,
Helm, Richard F.
in
Aedes - metabolism
,
Aedes - virology
,
Aedes aegypti
2018
The Aedes aegypti mosquito is the principal vector of arboviruses such as dengue, chikungunya, yellow fever, and Zika virus. These arboviruses are transmitted during adult female mosquito bloodfeeding. While these viruses must transverse the midgut to replicate, the blood meal must also reach the midgut to be digested, absorbed, or excreted, as aggregation of blood meal metabolites can be toxic to the female mosquito midgut. The midgut peritrophic matrix (PM), a semipermeable extracellular layer comprised of chitin fibrils, glycoproteins, and proteoglycans, is one such mechanism of protection for the mosquito midgut. However, this structure has not been characterized for adult female Ae. aegypti. We conducted a mass spectrometry based proteomic analysis to identify proteins that comprise or are associated with the adult female Ae. aegypti early midgut PM. Altogether, 474 unique proteins were identified, with 115 predicted as secreted. GO-term enrichment analysis revealed an abundance of serine-type proteases and several known and novel intestinal mucins. In addition, approximately 10% of the peptides identified corresponded to known salivary proteins, indicating Ae. aegypti mosquitoes extensively swallow their own salivary secretions. However, the physiological relevance of this remains unclear, and further studies are needed to determine PM proteins integral for midgut protection from blood meal derived toxicity and pathogen protection. Finally, we describe substantial discordance between previously described transcriptionally changes observed in the midgut in response to a bloodmeal and the presence of the corresponding protein in the PM. Data are available via ProteomeXchange with identifier PXD007627.
Journal Article
The β2Tubulin, Rad50-ATPase and enolase cis-regulatory regions mediate male germline expression in Tribolium castaneum
2021
Genetics-based pest management processes, including the sterile insect technique, are an effective method for the control of some pest insects. However, current SIT methods are not directly transferable to many important pest insect species due to the lack of genetic sexing strains. Genome editing is revolutionizing the way we conduct genetics in insects, including in
Tribolium castaneum
, an important genetic model and agricultural pest. We identified orthologues of β
2
Tubulin, Rad50-ATPase and enolase in
T. castaneum.
Using RT-PCR, we confirmed that these genes are predominantly expressed in the testis.
PiggyBac
-based transformation of
T. castaneum cis-
regulatory regions derived from
Tc-β
2
t
,
Tc-rad50
or
Tc-eno
resulted in EGFP expression specifically in the
T. castaneum
testis. Additionally, we determined that each of these regulatory regions regulates EGFP expression in different cell types of the male gonad.
Cis
-regulatory regions from
Tc-β
2
t
produced EGFP expression throughout spermatogenesis and also in mature sperms;
Tc-rad50
resulted in expression only in the haploid spermatid, while
Tc-eno
expressed EGFP in late spermatogenesis. In summary, the regulatory
cis
-regions characterized in this study are not only suited to study male gonadal function but could be used for development of transgenic sexing strains that produce one sex in pest control strategies.
Journal Article