Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Adil, Muhammad Faheem"
Sort by:
Mechanistic Insights into Potassium-Conferred Drought Stress Tolerance in Cultivated and Tibetan Wild Barley: Differential Osmoregulation, Nutrient Retention, Secondary Metabolism and Antioxidative Defense Capacity
2021
Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses.
Journal Article
Comparative Proteomic Analysis by iTRAQ Reveals that Plastid Pigment Metabolism Contributes to Leaf Color Changes in Tobacco (Nicotiana tabacum) during Curing
by
Zhao, Degang
,
Xiang, Zhangmin
,
Guo, Yushuang
in
Biosynthesis
,
Carotenoids
,
Chlorophyll - metabolism
2020
Tobacco (Nicotiana tabacum), is a world’s major non-food agricultural crop widely cultivated for its economic value. Among several color change associated biological processes, plastid pigment metabolism is of trivial importance in postharvest plant organs during curing and storage. However, the molecular mechanisms involved in carotenoid and chlorophyll metabolism, as well as color change in tobacco leaves during curing, need further elaboration. Here, proteomic analysis at different curing stages (0 h, 48 h, 72 h) was performed in tobacco cv. Bi’na1 with an aim to investigate the molecular mechanisms of pigment metabolism in tobacco leaves as revealed by the iTRAQ proteomic approach. Our results displayed significant differences in leaf color parameters and ultrastructural fingerprints that indicate an acceleration of chloroplast disintegration and promotion of pigment degradation in tobacco leaves due to curing. In total, 5931 proteins were identified, of which 923 (450 up-regulated, 452 down-regulated, and 21 common) differentially expressed proteins (DEPs) were obtained from tobacco leaves. To elucidate the molecular mechanisms of pigment metabolism and color change, 19 DEPs involved in carotenoid metabolism and 12 DEPs related to chlorophyll metabolism were screened. The results exhibited the complex regulation of DEPs in carotenoid metabolism, a negative regulation in chlorophyll biosynthesis, and a positive regulation in chlorophyll breakdown, which delayed the degradation of xanthophylls and accelerated the breakdown of chlorophylls, promoting the formation of yellow color during curing. Particularly, the up-regulation of the chlorophyllase-1-like isoform X2 was the key protein regulatory mechanism responsible for chlorophyll metabolism and color change. The expression pattern of 8 genes was consistent with the iTRAQ data. These results not only provide new insights into pigment metabolism and color change underlying the postharvest physiological regulatory networks in plants, but also a broader perspective, which prompts us to pay attention to further screen key proteins in tobacco leaves during curing.
Journal Article
Peach–potato aphid myzus persicae : current management strategies, challenges, and proposed solutions
by
Mohammad Mukarram
,
Jamin Ali
,
Muhammad Faheem Adil
in
Agricultural production
,
Biocontrol agents
,
Crop protection
2023
The peach–potato aphid, Myzus persicae (Sulzer), is one of the most important pests of economic crops. It damages the plant directly by consuming nutrients and water and indirectly by transmitting plant viruses. This pest has the unenviable title of having resistance to more insecticides than any other herbivorous insect pest. Due to the development of its resistance to chemical pesticides, it is necessary to find other control options. Consequently, increased efforts worldwide have been undertaken to develop new management approaches for M. persicae. In this review, we highlight the problems associated with the peach–potato aphid, its economic importance, and current management approaches. This review also describes the challenges with current management approaches and their potential solutions, with special focus given to the evolution of insecticidal resistance and sustainable pest management strategies, such as biocontrol agents, entomopathogens, the use of natural plant-derived compounds, and cultural methods. Furthermore, this review provides some successful approaches from the above eco-friendly pest management strategies that show high efficacy against M. persicae.
Journal Article
Gene expression analyses of the calmodulin binding protein 60 family under water stress conditions in rice
2025
Plants have developed elaborate mechanisms for perceiving extracellular stimuli and subsequently activating defense reactions through a multifaceted interaction of signaling cascades. Calcium ion (Ca²⁺), an essential and ubiquitous intracellular second messenger molecules, whose concentration ([Ca
2+
]cyt) has been observed to rise in response to numerous environmental stresses. The calcium/calmodulin (Ca²⁺/CaM) complex triggers apposite cellular responses through modifying the activities of a varied array of CaM-binding proteins (CBPs). Among
CBPs
, the
CBP60
gene family has been identified as key regulators of stress responses in several crop species. Recently, we have demonstrated the expanded and diversified role of
OsCBP60
in rice against devastating pathogens. Here, we analyzed the diversified roles of
OsCBP60s
in two major abiotic stresses, namely reproductive drought and submergence stress.
OsCBP60bcd
-2 and
OsCBP60g-1/OsSARD1
were consistently upregulated during reproductive drought stress in rice. However,
OsCBP60g-5
and
OsCBP60g-6
were steadily up-regulated under submergence stress in rice. Interestingly,
OsCBP60g-4
was consistently upregulated in both abiotic stresses, except on the third day of reproductive drought. The differential expression of
OsCBP60s
under water stress highlights the importance of further studying these genes as potential targets for enhancing stress resilience in rice.
Journal Article
Modulation of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic Acid in Rice (Oryza sativa) Plant under Arsenic Stress
by
Shadma Afzal
,
Fangyuan Yu
,
Muhammad Faheem Adil
in
Abiotic stress
,
antioxidant activity
,
Antioxidants
2021
The objective of this research was to determine the effect of zinc oxide nanoparticles (ZnONPs) and/or salicylic acid (SA) under arsenic (As) stress on rice (Oryza sativa). ZnONPs are analyzed for various techniques viz., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). All of these tests established that ZnONPs are pure with no internal defects, and can be potentially used in plant applications. Hence, we further investigated for better understanding of the underlying mechanisms and the extent of ZnONPs and SA induced oxidative stress damages. More restricted plant growth, gas exchange indices, significant reduction in the SPAD index and maximum quantum yield (Fv/Fm) and brutal decline in protein content were noticed in As-applied plants. In contrast, foliar fertigation of ZnONPs and/or SA to As-stressed rice plants lessens the oxidative stress, as exposed by subordinate levels of reactive oxygen species (ROS) synthesis. Improved enzymatic activities of catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD), proline and total soluble protein contents under ZnONPs and SA treatment plays an excellent role in the regulation of various transcriptional pathways participated in oxidative stress tolerance. Higher content of nitrogen (N; 13%), phosphorus (P; 10%), potassium (K; 13%), zinc (Zn; 68%), manganese (Mn; 14%), and iron (Fe; 19) in ZnONPs and SA treated plants under As-stress, thus hampered growth and photosynthetic efficiency of rice plants. Our findings suggest that toxicity of As was conquering by the application of ZnONPs and SA in rice plants.
Journal Article
Pan-transcriptomic Profiling Demarcates Serendipita Indica-Phosphorus Mediated Tolerance Mechanisms in Rice Exposed to Arsenic Toxicity
by
Askri, Syed Muhammad Hassan
,
Shamsi, Imran Haider
,
Feng, Qidong
in
Accumulation
,
Arsenic
,
Biosynthesis
2023
Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant’s developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.
Journal Article
Effect of boron deficiency on the photosynthetic performance of sugar beet cultivars with contrasting boron efficiencies
2023
Boron (B) deficiency severely affects the quality of sugar beet production, and the employment of nutrient-efficient varieties for cultivation is a crucial way to solve environmental and resource-based problems. However, the aspect of leaf photosynthetic performance among B-efficient sugar beet cultivars remains uncertain. The B deficient and B-sufficient treatments were conducted in the experiment using KWS1197 (B-efficient) and KWS0143 (B-inefficient) sugar beet cultivars as study materials. The objective of the present study was to determine the impacts of B deficiency on leaf phenotype, photosynthetic capacity, chloroplast structure, and photochemical efficiency of the contrasting B-efficiency sugar beet cultivars. The results indicated that the growth of sugar beet leaves were dramatically restricted, the net photosynthetic rate was significantly decreased, and the energy flux, quantum yield, and flux ratio of PSII reaction centers were adversely affected under B deficiency. Compared to the KWS0143 cultivar, the average leaf area ratio of the KWS1197 cultivar experienced less impact, and its leaf mass ratio (LMR) increased by 26.82% under B deficiency, whereas for the KWS0143 cultivar, the increase was only 2.50%. Meanwhile, the light energy capture and utilization capacity of PSII reaction centers and the proportion of absorbed light energy used for electron transfer were higher by 3.42% under B deficiency; KWS1197 cultivar managed to alleviate the photo-oxidative damage, which results from excessive absorbed energy ( ABS/RC ), by increasing the dissipated energy ( DI o /RC ). Therefore, in response to B deprivation, the KWS1197 cultivar demonstrated greater adaptability in terms of morphological indices and photosynthetic functions, which not only explains the improved performance but also renders the measured parameters as the key features for varietal selection, providing a theoretical basis for the utilization of efficient sugar beet cultivars in future.
Journal Article
Comprehensive analysis of transcription factor binding sites and expression profiling of rice pathogenesis related genes (OsPR1)
by
Alakeel, Khaled A.
,
Prasad, Bishun Deo
,
Kumari, Diksha
in
Abiotic stress
,
Amino acids
,
Binding sites
2024
Pathogenesis-related (PR) proteins, found in plants, play a crucial role in responding to both biotic and abiotic stresses and are categorized into 17 distinct families based on their properties and functions. We have conducted a phylogenetic analysis of OsPR1 genes (rice PR1 genes) in conjunction with 58 putative PR1 genes identified in Brachypodium distachyon , Hordeum vulgare , Brassica rapa , and Zea mays through BLASTP predictions. We extensively investigated the responses of the remaining 11 rice PR1 genes, using OsPR1a as a reference, under various stress conditions, including phytohormone treatments (salicylic acid and brassinosteroid [BR]), wounding, and heat stress (HS). In rice, of the 32 predicted OsPR1 genes, 12 have been well-characterized for their roles in disease resistance, while the functions of the remaining genes have not been studied extensively. In our study, we selected an additional 11 OsPR1 genes for further analysis and constructed a phylogenetic tree based on the presence of a 10-amino-acid-long conserved motif within these proteins. The phylogenetic analysis revealed that both OsPR1a from earlier studies and OsPR1-74 from our current study belong to the same clade. These genes consistently exhibit upregulation in response to diverse stress treatments such as biotic stress and abiotic stresses such as heat, drought, and salinity, indicating their potential roles in enhancing stress tolerance in rice. Significantly, this study delves into the previously unexplored role of OsPR1 genes in responding to Brassinosteroid (BR) and heat stress (HS) treatments, confirming their involvement in stress responses through qRT-PCR analysis. We found that seven genes were upregulated by EBR treatment. During heat stress (HS), six and seven genes were upregulated at 1hand 4h HS, respectively. The remaining genes OsPR1-22 and OsPR1-75 were upregulated at 1h but downregulated at 4h HS and under EBR treatment. In contrast, OsPR1-76 was upregulated at both 1h and 4h HS, but downregulated under EBR treatment. Promoters of PR1 genes in rice and other crops are rich in transcription factor binding sites (TFBSs) and feature a conserved Cysteine-rich secretory protein (SCP or CAP) motif. This study advances our understanding of PR1 gene regulation and its potential to enhance stress tolerance in rice.
Journal Article
Nitrogen optimization coupled with alternate wetting and drying practice enhances rhizospheric nitrifier and denitrifier abundance and rice productivity
by
Zhang, Qichun
,
Castellano-Hinojosa, Antonio
,
Khan, Azhar Abbas
in
Abundance
,
Agricultural production
,
Ammonia
2022
Optimizing nitrogen (N) fertilization without sacrificing grain yield is a major concern of rice production system because most of the applied N has been depleted from the soil and creating environmental consequences. Hence, limited information is available about nutrient management (NM) performance at a specific site under alternate wetting and drying (AWD) irrigation compared to conventional permanent flooding (PF). We aimed to inquire about the performance of NM practices compared to the farmer’s fertilizer practice (FFP) under PF and AWD on rhizospheric nitrifier and denitrifier abundance, rice yield, plant growth, and photosynthetic parameters. Two improved NM practices; nutrient management by pig manure (NMPM); 40% chemical N replaced by pig manure (organic N), and nutrient management by organic slow-release fertilizer (NMSR); 40% chemical N replaced by organic slow-release N were compared. The results showed an increased total grain yield (16.06%) during AWD compared to PF. Compared to conventional FFP, NMPM, and NMSR significantly increased the yields by 53.84 and 29.67%, respectively, during AWD. Meanwhile, PF prompted a yield increase of 45.07 and 28.75% for NMPM and NMSR, respectively, ( p < 0.05) compared to FFP. Besides, a significant correlation was observed between grain yield and nitrogen content during AWD ( R 2 = 0.58, p < 0.01), but no significant correlation was observed during PF. The NMPM contributed to photosynthetic attributes and the relative chlorophyll content under both watering events. Moreover, relatively higher abundances of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were observed during AWD, and the highest value was found after the late panicle stage. Our results suggest that the AWD–NMPM model is the best option to stimulate nitrifier and denitrifier gene abundance and promote rice production.
Journal Article