Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Adrianus, Christopher"
Sort by:
Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs
2022
CRISPR-based diagnostics enable specific sensing of DNA and RNA biomarkers associated with human diseases. This is achieved through the binding of guide RNAs to a complementary sequence that activates Cas enzymes to cleave reporter molecules. Currently, most CRISPR-based diagnostics rely on target preamplification to reach sufficient sensitivity for clinical applications. This limits quantification capability and adds complexity to the reaction chemistry. Here we show the combination of a CRISPR–Cas-based reaction with a nanozyme-linked immunosorbent assay, which allows for the quantitative and colorimetric readout of Cas13-mediated RNA detection through catalytic metallic nanoparticles at room temperature (CrisprZyme). We demonstrate that CrisprZyme is easily adaptable to a lateral-flow-based readout and different Cas enzymes and enables the sensing of non-coding RNAs including microRNAs, long non-coding RNAs and circular RNAs. We utilize this platform to identify patients with acute myocardial infarction and to monitor cellular differentiation in vitro and in tissue biopsies from prostate cancer patients. We anticipate that CrisprZyme will serve as a universally applicable signal catalyst for CRISPR-based diagnostics, which will expand the spectrum of targets for preamplification-free, quantitative detection.The combination of catalytic platinum particles, nanozymes and a CRISPR-based reaction allows for the quantification of non-coding RNAs at the picomolar range. This assay, CrisprZyme, has a colorimetric readout and works at room temperature without preamplification.
Journal Article
Photoswitchable gating of non-equilibrium enzymatic feedback in chemically communicating polymersome nanoreactors
2023
The circadian rhythm generates out-of-equilibrium metabolite oscillations that are controlled by feedback loops under light/dark cycles. Here we describe a non-equilibrium nanosystem comprising a binary population of enzyme-containing polymersomes capable of light-gated chemical communication, controllable feedback and coupling to macroscopic oscillations. The populations consist of esterase-containing polymersomes functionalized with photo-responsive donor–acceptor Stenhouse adducts (DASA) and light-insensitive semipermeable urease-loaded polymersomes. The DASA–polymersome membrane becomes permeable under green light, switching on esterase activity and decreasing the pH, which in turn initiates the production of alkali in the urease-containing population. A pH-sensitive pigment that absorbs green light when protonated provides a negative feedback loop for deactivating the DASA–polymersomes. Simultaneously, increased alkali production deprotonates the pigment, reactivating esterase activity by opening the membrane gate. We utilize light-mediated fluctuations of pH to perform non-equilibrium communication between the nanoreactors and use the feedback loops to induce work as chemomechanical swelling/deswelling oscillations in a crosslinked hydrogel. We envision possible applications in artificial organelles, protocells and soft robotics.The circadian rhythm generates out-of-equilibrium metabolite oscillations controlled by feedback loops under light/dark cycles. Now, it has been shown that these life-like properties can emerge from a non-equilibrium nanosystem comprising a binary population of enzyme-containing polymersomes capable of light-gated chemical communication, controllable feedback and coupling to macroscopic oscillations.
Journal Article
Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs
2020
Cells infected by influenza virus mount a large-scale antiviral response and most cells ultimately initiate cell-death pathways in an attempt to suppress viral replication. We performed a CRISPR–Cas9-knockout selection designed to identify host factors required for replication after viral entry. We identified a large class of presumptive antiviral factors that unexpectedly act as important proviral enhancers during influenza virus infection. One of these, IFIT2, is an interferon-stimulated gene with well-established antiviral activity but limited mechanistic understanding. As opposed to suppressing infection, we show in the present study that IFIT2 is instead repurposed by influenza virus to promote viral gene expression. CLIP‐seq demonstrated that IFIT2 binds directly to viral and cellular messenger RNAs in AU‐rich regions, with bound cellular transcripts enriched in interferon‐stimulated mRNAs. Polysome and ribosome profiling revealed that IFIT2 prevents ribosome pausing on bound mRNAs. Together, the data link IFIT2 binding to enhanced translational efficiency for viral and cellular mRNAs and ultimately viral replication. Our findings establish a model for the normal function of IFIT2 as a protein that increases translation of cellular mRNAs to support antiviral responses and explain how influenza virus uses this same activity to redirect a classically antiviral protein into a proviral effector.
The authors do a CRISPR-knockout selection to investigate host factors required for influenza replication. They identified IFIT2 as being repurposed by influenza to promote replication.
Journal Article
Detrital Subsidies in the Diet of Mytilus edulis; Macroalgal Detritus Likely Supplements Essential Fatty Acids
by
Byron, Carrie J.
,
Brady, Damian C.
,
Parrish, Christopher C.
in
Algae
,
Aquaculture
,
Aquatic plants
2020
Detritus is a frequent, poorly defined, component of bivalve growth and carrying capacity models. The purpose of this study was to determine the proportional contributions of detrital material derived from primary producers (phytoplankton, macroalgae, Spartina alterniflora , and terrestrial leaf litter) to particulate organic matter (POM) and blue mussel’s ( Mytilus edulis ) diet within a temperate bay (Saco Bay, ME, United States). We assessed which detrital sources, if any, warranted incorporation into modeling efforts. Stable isotopes (δ 13 C and δ 15 N) and fatty acid biomarkers (FA) of mussels, size fractionated (<100 μm) POM, and primary producer endmembers (phytoplankton, Saccharina latissima, Ascophyllum nodosum, Chondrus crispus, Spartina alterniflora and leaf litter) collected between 2016 and 2017 were used to estimate endmember contributions to POM and mussel diets. Based on FAs dinoflagellates were the most abundant phytoplankton in Saco Bay, even during the fall diatom bloom. Diatoms within the bay were primarily centric, but pennate diatoms were at times present in the water column (e.g., in September). Following abundances of dinoflagellates, and centric and pennate diatoms, 22:6ω3 (DHA) was the most abundant essential FA (8.6 ± 0.1% total FAs), followed by 20:5ω3 (EPA: 7.0 ± 0.1%) and 20:4ω6 (ARA: 0.3 ± 0.1%). On average, phytoplankton derived organic matter contributed 22.1 ± 0.3% of the total POM in the bay. The concentration of non-fresh phytoplankton organic matter, or remaining organic matter (REMORG), was positively correlated with all endmember biomarkers. However, the proportion (%) of vascular plant, macroalgal, and detrital FAs was negatively correlated with the concentration of REMORG. This finding suggests in periods of low productivity, vascular plant and macroalgal detritus are proportionally more important contributors to POM. Mussels were broad spectrum omnivores, consuming phytoplankton, zooplankton, and detrital material. Detrital contributions to mussel diets were important (minimum of 16% of diet). Although small, macroalgae’s dietary contribution (8%) to M. edulis may be important. Macroalgal detritus contained essential FAs (20:5ω3 and 20:4ω6) that could supplement mussel diets, as M. edulis in Saco Bay were likely limited by 20:5ω3. Consideration of how macroalgal detritus affects the availability of essential FAs in POM may be useful to incorporate into aquaculture site selection.
Journal Article
Defining a highly conserved B cell epitope in the receptor binding motif of SARS-CoV-2 spike glycoprotein
2024
SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization. We show that 77.8% of the B cell clones in the GC expressed as representative monoclonal antibodies recognized the spike protein, with a third (37.8%) of these targeting the receptor binding domain (RBD). Strikingly, only one RBD-targeting mAb, mAb-52, neutralized all tested SARS-CoV-2 strains, including the recent KP.2 variant. mAb-52 utilizes the IGHV3-66 public clonotype, protects hamsters challenged against the EG.5.1 variant and targets the class I/II RBD epitope, closely mimicking the binding footprint of ACE2. Finally, we show that the remarkable breadth of mAb-52 is due to the somatic hypermutations accumulated within vaccine-induced GC reaction.
Journal Article
Durable immunity to SARS-CoV-2 in both lower and upper airways achieved with a gorilla adenovirus (GRAd) S-2P vaccine in non-human primates
by
Andrew, Shayne F
,
Provost, Samantha
,
Mychalowych, Anna
in
Adenoviruses
,
Fusion protein
,
Immunology
2023
SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.Competing Interest StatementThe authors have declared no competing interest.