Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Agresti, David G."
Sort by:
In situ Laser-Raman Imagery of Precambrian Microscopic Fossils
Laser-Raman imagery is a sensitive, noninvasive, and nondestructive technique that can be used to correlate directly chemical composition with optically discernable morphology in ancient carbonaceous fossils. By affording means to investigate the molecular makeup of specimens ranging from megascopic to microscopic, it holds promise for providing insight into aspects of organic metamorphism and biochemical evolution, and for clarifying the nature of ancient minute fossil-like objects of putative but uncertain biogenicity.
Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in-situ and remote observations
Orbital and in-situ data from the surface of Mars indicate that nanophase weathering products are important constituents of martian rocks and soils. Nanophase minerals have the capacity to chemisorb anions like sulfate and phosphate onto their surfaces, but it is not known whether chemisorption is an important or even detectable process via orbital and in-situ observations. The detection of chemisorbed sulfate and phosphate anions on nanophase minerals would constrain the speciation of these anions and past aqueous environmental conditions. Here, we synthesized two nanophase weathering products that are common in terrestrial volcanic soils and have been identified on the martian surface: allophane and nanophase ferric oxide as represented by ferrihydrite. We specifically adsorbed sulfate and phosphate separately onto the nanophase mineral surfaces (4.5 and 1.6 wt% SO42-, and 6.7 and 8.9 wt% PO43- on allophane and ferrihydrite, respectively) and analyzed the untreated and chemisorbed materials using instruments similar to those on orbital and landed Mars missions (including X-ray diffraction, evolved gas analysis, Mössbauer spectroscopy, and VNIR and thermal-IR spectroscopy). Evolved gas analysis is the optimum method to detect chemisorbed sulfate, with SO2(g) being released at >900 °C for allophane and 400-800 °C for ferrihydrite. Chemisorbed sulfate and phosphate anions affect the thermal-IR spectra of allophane and ferrihydrite in the S-O and P-O stretching region when present in abundances of only a few weight percent; S-O and P-O stretching bands are apparent as short-wavelength shoulders on Si-O stretching bands. Sulfate and phosphate anions chemisorbed to allophane have small but measurable effects on the position of the OH-H2O bands at 1.4 and 1.9 µm in near-IR spectra. Chemisorbed sulfate and phosphate anions did not affect the X-ray diffraction patterns, Mössbauer spectra, and visible/near-IR spectra of ferrihydrite. These data suggest that sulfate chemisorbed onto the surfaces of nanophase minerals can be detected with the Sample Analysis at Mars (SAM) instrument on the Mars science laboratory Curiosity rover, and subtle signatures of chemisorbed sulfate and phosphate may be detectable by IR spectrometers on landed missions. The combined use of SAM, the Chemistry and Mineralogy (CheMin) instrument, and the Alpha Particle X-ray Spectrometer (APXS) on Curiosity allows for the most detailed characterization to date of nanophase minerals in martian rocks and soils and the potential presence of chemisorbed anionic complexes.
Laser–Raman imagery of Earth's earliest fossils
Unlike the familiar Phanerozoic history of life, evolution during the earlier and much longer Precambrian segment of geological time centred on prokaryotic microbes 1 . Because such microorganisms are minute, are preserved incompletely in geological materials, and have simple morphologies that can be mimicked by nonbiological mineral microstructures, discriminating between true microbial fossils and microscopic pseudofossil ‘lookalikes’ can be difficult 2 , 3 . Thus, valid identification of fossil microbes, which is essential to understanding the prokaryote-dominated, Precambrian 85% of life's history, can require more than traditional palaeontology that is focused on morphology. By combining optically discernible morphology with analyses of chemical composition, laser–Raman spectroscopic imagery of individual microscopic fossils provides a means by which to address this need. Here we apply this technique to exceptionally ancient fossil microbe-like objects, including the oldest such specimens reported from the geological record, and show that the results obtained substantiate the biological origin of the earliest cellular fossils known.
On simfitting MER Mössbauer data to characterize Martian hematite
Mössbauer spectra of Eagle Crater outcrop rocks in Meridiani Planum were acquired by the Mars Exploration Rover (MER) Opportunity. Sixty spectra, containing ~20 to 60% hematite by area, were simultultaneously fit (simfit) in a self-consistent manner to a single chi-squared minimum, where relations among parameters from different spectra were defined for both sol (Martian day) and acquisition temperature (200–280 K). Different spectral models were compared, hematite being modeled optimally with two sextets. Sextet S1 (~35% of total sextet area) has narrower linewidths, a larger magnetic hyperfine field, and a quadrupole shift that changes smoothly from positive to negative values as the temperature increases through the bulk Morin transition temperature. Sextet S2 has broader linewidths, a likely skewed line shape, a smaller hyperfine field, and a quadrupole shift that remains negative at all temperatures, implying the S2 phase is weakly ferromagnetic at all temperatures.
Laser-Raman spectroscopy: images of the Earth's earliest fossils?
Fossil remains of the most ancient, minute forms of life on Earth and other planets are hard to recognize. Schopf et al. claim to have identified the biological remnant material known as kerogen in microscopic entities in rock by using Raman spectroscopic analysis. On the basis of a substantial body of published evidence, however, we contend that the Raman spectra of Schopf et al. indicate that these are disordered carbonaceous materials of indeterminate origin. We maintain that Raman spectroscopy cannot be used to identify microfossils unambiguously, although it is a useful technique for pinpointing promising microscopic entities for further investigation.
Laser-Raman spectroscopy : Images of the Earth's earliest fossils?
The criticism by Pasteris and Wopenka of our use of laser-Raman imagery to investigate the carbonaceous make-up of extremely ancient fossils focuses only on their Raman signature; however, our interpretation that the carbonaceous matter that makes up these specimens is biogenic is based on several lines of evidence, of which Raman spectroscopy is only one.