Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Ahnfelt-Rønne, Jonas"
Sort by:
Liraglutide upregulates the Cftr gene and regulates the mucus transcriptome profile in Brunner's glands in mice
Background The metabolic syndrome encompasses a state of inflammation and metabolic dysfunction, possibly mediated via a disturbed intestinal barrier. Glucagon‐like peptide‐1 receptor agonists (GLP‐1RAs), such as liraglutide, have shown promising anti‐inflammatory effects beyond glucose lowering and weight loss, but the underlying mechanism remains to be elucidated. We hypothesised that GLP‐1RAs improve the intestinal barrier function and overall inflammatory status by direct gene activation in mucus‐secreting Brunner's glands in the mouse duodenum, known for their high density of glucagon‐like peptide‐1 receptors (GLP‐1Rs). Methods Using bulk RNA sequencing, in situ hybridisation, and immunohistochemistry, we analysed the change in the genetic phenotype of mouse Brunner's gland cells following GLP‐1R activation by liraglutide. Results We show that liraglutide induces a novel and robust upregulation of the gene for the Cystic fibrosis transmembrane conductance regulator, Cftr, in Brunner's glands as a part of an overall genetic phenotype involved in ion channel activity, mucus secretion, and hydration via GLP‐1R activation. Additionally, we found a robust upregulation of the genes Muc5b, Il33, Ren1, and Vldlr in Brunner's glands. Conclusion Collectively, our results imply an enhanced mucus response from Brunner's glands following GLP‐1R activation, which might play a role in the effect of GLP‐1. RNA sequencing, in situ hybridisation, and immunohistochemistry show that the glucagon‐like peptide‐1 receptor agonist liraglutide upregulates Cftr, Muc5b, Il33, Ren1, and Vldlr in Brunner's glands of mice.
Acetyl-CoA-carboxylase 1 (ACC1) plays a critical role in glucagon secretion
Dysregulated glucagon secretion from pancreatic alpha-cells is a key feature of type-1 and type-2 diabetes (T1D and T2D), yet our mechanistic understanding of alpha-cell function is underdeveloped relative to insulin-secreting beta-cells. Here we show that the enzyme acetyl-CoA-carboxylase 1 (ACC1), which couples glucose metabolism to lipogenesis, plays a key role in the regulation of glucagon secretion. Pharmacological inhibition of ACC1 in mouse islets or αTC9 cells impaired glucagon secretion at low glucose (1 mmol/l). Likewise, deletion of ACC1 in alpha-cells in mice reduced glucagon secretion at low glucose in isolated islets, and in response to fasting or insulin-induced hypoglycaemia in vivo. Electrophysiological recordings identified impaired K ATP channel activity and P/Q- and L-type calcium currents in alpha-cells lacking ACC1, explaining the loss of glucose-sensing. ACC-dependent alterations in S-acylation of the K ATP channel subunit, Kir6.2, were identified by acyl-biotin exchange assays. Histological analysis identified that loss of ACC1 caused a reduction in alpha-cell area of the pancreas, glucagon content and individual alpha-cell size, further impairing secretory capacity. Loss of ACC1 also reduced the release of glucagon-like peptide 1 (GLP-1) in primary gastrointestinal crypts. Together, these data reveal a role for the ACC1-coupled pathway in proglucagon-expressing nutrient-responsive endocrine cell function and systemic glucose homeostasis. Veprik et al. show that Acetyl-CoA-carboxylase 1 (ACC1), an enzyme that couples glucose metabolism to lipogenesis, is involved in glucagon secretion and regulates S-acylation of critical glucose-sensing proteins. Loss of ACC1 in pancreatic alpha-cells negatively affects both size and number, as well as glucagon content, while in gut enteroendocrine cells leads to reduced release of glucagon-like peptide 1.
Mind bomb 1 is required for pancreatic β-cell formation
During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1+Ptf1a+ multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1–Ptf1a+ acinar progenitors and proximal Nkx6-1+Ptf1a– duct and β-cell progenitors. Distal cells are initially multipotent, but evolve into unipotent, acinar cell progenitors. Conversely, proximal cells are bipotent and give rise to duct cells and late-born endocrine cells, including the insulin producing β-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of β-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and β-cell formation. We found that endoderm-specific inactivation of Mib1 caused a loss of Nkx6-1+Ptf1a– and Hnf1β+ cells and a corresponding loss of Neurog3+ endocrine progenitors and β-cells. An accompanying increase in Nkx6-1–Ptf1a+ and amylase+ cells, occupying the proximal domain, suggests that proximal cells adopt a distal fate in the absence of Mib1 activity. Impeding Notch-mediated transcriptional activation by conditional expression of dominant negative Mastermind-like 1 (Maml1) resulted in a similarly distorted P-D patterning and suppressed β-cell formation, as did conditional inactivation of the Notch target gene Hes1. Our results reveal iterative use of Notch in pancreatic development to ensure correct P-D patterning and adequate β-cell formation.
Mesenchymal Bone Morphogenetic Protein Signaling Is Required for Normal Pancreas Development
Pancreas organogenesis is orchestrated by interactions between the epithelium and the mesenchyme, but these interactions are not completely understood. Here we investigated a role for bone morphogenetic protein (BMP) signaling within the pancreas mesenchyme and found it to be required for the normal development of the mesenchyme as well as for the pancreatic epithelium. We analyzed active BMP signaling by immunostaining for phospho-Smad1,5,8 and tested whether pancreas development was affected by BMP inhibition after expression of Noggin and dominant negative BMP receptors in chicken and mouse pancreas. Endogenous BMP signaling is confined to the mesenchyme in the early pancreas and inhibition of BMP signaling results in severe pancreatic hypoplasia with reduced epithelial branching. Notably, we also observed an excessive endocrine differentiation when mesenchymal BMP signaling is blocked, presumably secondary to defective mesenchyme to epithelium signaling. We conclude that BMP signaling plays a previously unsuspected role in the mesenchyme, required for normal development of the mesenchyme as well as for the epithelium.
Semaglutide lowers body weight in rodents via distributed neural pathways
Semaglutide, a glucagon-like peptide 1 (GLP-1) analog, induces weight loss, lowers glucose levels, and reduces cardiovascular risk in patients with diabetes. Mechanistic preclinical studies suggest weight loss is mediated through GLP-1 receptors (GLP-1Rs) in the brain. The findings presented here show that semaglutide modulated food preference, reduced food intake, and caused weight loss without decreasing energy expenditure. Semaglutide directly accessed the brainstem, septal nucleus, and hypothalamus but did not cross the blood-brain barrier; it interacted with the brain through the circumventricular organs and several select sites adjacent to the ventricles. Semaglutide induced central c-Fos activation in 10 brain areas, including hindbrain areas directly targeted by semaglutide, and secondary areas without direct GLP-1R interaction, such as the lateral parabrachial nucleus. Automated analysis of semaglutide access, c-Fos activity, GLP-1R distribution, and brain connectivity revealed that activation may involve meal termination controlled by neurons in the lateral parabrachial nucleus. Transcriptomic analysis of microdissected brain areas from semaglutide-treated rats showed upregulation of prolactin-releasing hormone and tyrosine hydroxylase in the area postrema. We suggest semaglutide lowers body weight by direct interaction with diverse GLP-1R populations and by directly and indirectly affecting the activity of neural pathways involved in food intake, reward, and energy expenditure.
An atlas of rabbit development as a model for single-cell comparative genomics
Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research. Ton, Keitley et al. provide a morphological and molecular atlas of rabbit development. Comparative studies reveal that combining rabbit and mouse atlases can serve as a model for dissecting early primate development.
Mind bomb 1 is required for pancreatic Beta-cell formation
During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1+Ptf1a+ multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1-Ptf1a+ acinar progenitors and proximal Nkx6-1+Ptf1a- duct and β-cell progenitors. Distal cells are initially multipotent, but evolve into unipotent, acinar cell progenitors. Conversely, proximal cells are bipotent and give rise to duct cells and late-born endocrine cells, including the insulin producing β-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of β-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and β-cell formation. We found that endoderm-specific inactivation of Mib1 caused a loss of Nkx6-1+Ptf1a- and Hnf1β+ cells and a corresponding loss of Neurog3+ endocrine progenitors and β-cells. An accompanying increase in Nkx6-1-Ptf1a+ and amylase+ cells, occupying the proximal domain, suggests that proximal cells adopt a distal fate in the absence of Mib1 activity. Impeding Notch-mediated transcriptional activation by conditional expression of dominant negative Mastermind-like 1 (Maml1) resulted in a similarly distorted P-D patterning and suppressed β-cell formation, as did conditional inactivation of the Notch target gene Hes1. Our results reveal iterative use of Notch in pancreatic development to ensure correct P-D patterning and adequate β-cell formation. [PUBLICATION ABSTRACT]
Rabbit Development as a Model for Single Cell Comparative Genomics
Biomedical research relies heavily on the use of model organisms to gain insight into human health and development. Traditionally, the mouse has been the favored vertebrate model, due to its experimental and genetic tractability. Non-rodent embryological studies however highlight that many aspects of early mouse development, including the egg-cylinder topology of the embryo and its method of implantation, diverge from other mammals, thus complicating inferences about human development. In this study, we constructed a morphological and molecular atlas of rabbit development, which like the human embryo, develops as a flat-bilaminar disc. We report transcriptional and chromatin accessibility profiles of almost 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis, and early organogenesis. Using a novel computational pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism, revealing that extra-embryonic tissues, as well as gut and PGC cell types, are highly divergent between species. Focusing on these extra-embryonic tissues, which are highly accessible in the rabbit, we characterize the gene regulatory programs underlying trophoblast differentiation and identify novel signaling interactions involving the yolk sac mesothelium during hematopoiesis. Finally, we demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and analysis pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single cell comparative genomics more broadly across biomedical research. Competing Interest Statement J.A.-R. and T.K.A are employed by Novo Nordisk. B.G. has received research funding from Novo Nordisk. Footnotes * https://marionilab.github.io/RabbitGastrulation2022/ * https://marionilab.github.io/ExtendedMouseAtlas/