Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
120 result(s) for "Ai Nakajima"
Sort by:
Effect of Breath Holding on Spleen Volume Measured by Magnetic Resonance Imaging
Ultrasonographic studies have demonstrated transient reduction in spleen volume in relation to apnea diving. We measured spleen volume under various respiratory conditions by MR imaging to accurately determine the influence of ordinary breath holding on spleen volumetry. Twelve healthy adult volunteers were examined. Contiguous MR images of the spleen were acquired during free breathing and during respiratory manipulations, including breath holding at the end of normal expiration, breath holding at deep inspiration, and the valsalva maneuver, and spleen volume was measured from each image set based on the sum-of-areas method. Acquisition during free breathing was performed with respiratory triggering. The duration of each respiratory manipulation was 30 s, and five sets of MR images were acquired serially during each manipulation. Baseline spleen volume before respiratory manipulation was 173.0 ± 79.7 mL, and the coefficient of variance for two baseline measures was 1.4% ± 1.6%, suggesting excellent repeatability. Spleen volume decreased significantly just after the commencement of respiratory manipulation, remained constant during the manipulation, and returned to the control value 2 min after the cessation of the manipulation, irrespective of manipulation type. The percentages of volume reduction were 10.2% ± 2.9%, 10.2% ± 3.5%, and 13.3% ± 5.7% during expiration breath holding, deep-inspiration breath holding, and the valsalva maneuver, respectively, and these values did not differ significantly. Spleen volume is reduced during short breath-hold apnea in healthy adults. Physiological responses of the spleen to respiratory manipulations should be considered in the measurement and interpretation of spleen volume.
Cardiovascular magnetic resonance evaluation of left ventricular peak filling rate using steady-state free precession and phase contrast sequences
Background We investigated a practical method to measure peak filling rate (PFR) as an indicator of diastolic function of the left ventricle. Ten adult volunteers underwent cine MR imaging using steady-state free precession (SSFP) and phase contrast (PC) sequences to measure PFR. Two PC image sets were acquired at the mitral valve orifice, and PFR was determined from the set with high true temporal resolution (temporal PC method) or with high spatial resolution (spatial PC method). SSFP images covering the left ventricle were acquired, and a time–volume curve was generated around the peak filling phase. PFR was determined using parabolic curve fitting on the first-derivative curve of the LV time–volume curve. Findings PFR values estimated by the PC methods correlated well with those estimated by the SSFP method, despite apparent underestimation. The underestimation was smaller for the temporal PC method (12 %) than for the spatial PC method (28 %). Intra- and inter-observer repeatabilities were better for the PC methods than for the SSFP method. Conclusions PFR measurement by PC imaging with high true temporal resolution is convenient and offers excellent repeatability and acceptable accuracy, indicating suitability for clinical use.
Quantitative Evaluation of Display Contrast of Gd-EOB-DTPA-Enhanced Magnetic Resonance Images: Effects of the Flip Angle and Grayscale Gamma Value
Introduction. Display contrast can be changed nonlinearly by manipulating the gamma value of the grayscale. We investigated the contrast of the hepatobiliary-phase images acquired with different flip angles (FAs) and displayed with different gamma values in Gd-EOB-DTPA-enhanced magnetic resonance imaging. Material and Methods. Twenty patients with liver tumors were studied. Hepatobiliary-phase images were acquired at low (12°) and high (30°) FAs. Low-FA images were converted to simulate images displayed with different gamma values, using ImageJ software. To assess image contrast, the liver-to-muscle signal ratio (LMR), liver-to-spleen signal ratio (LSR), contrast ratio (CR), liver signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated. Results. The LMR, LSR, and CR were higher in the high-FA images than in the low-FA original images. Although the SNR was lower in the high-FA images, indicating an increase in noise, the CNR was higher. Raising the gamma value increased the LMR, LSR, and CR, notably decreased the SNR, and slightly decreased the CNR. Conclusion. Increasing the FA enhanced image contrast, supporting its usefulness for improving the delineation of focal liver lesions. Although the associated increase in noise may be problematic, raising the grayscale gamma value enhances the display contrast of low-FA images.
Effect of Breath Holding on Spleen Volume Measured by Magnetic Resonance Imaging. e68670
Objective Ultrasonographic studies have demonstrated transient reduction in spleen volume in relation to apnea diving. We measured spleen volume under various respiratory conditions by MR imaging to accurately determine the influence of ordinary breath holding on spleen volumetry. Materials and Methods Twelve healthy adult volunteers were examined. Contiguous MR images of the spleen were acquired during free breathing and during respiratory manipulations, including breath holding at the end of normal expiration, breath holding at deep inspiration, and the valsalva maneuver, and spleen volume was measured from each image set based on the sum-of-areas method. Acquisition during free breathing was performed with respiratory triggering. The duration of each respiratory manipulation was 30 s, and five sets of MR images were acquired serially during each manipulation. Results Baseline spleen volume before respiratory manipulation was 173.0 plus or minus 79.7 mL, and the coefficient of variance for two baseline measures was 1.4% plus or minus 1.6%, suggesting excellent repeatability. Spleen volume decreased significantly just after the commencement of respiratory manipulation, remained constant during the manipulation, and returned to the control value 2 min after the cessation of the manipulation, irrespective of manipulation type. The percentages of volume reduction were 10.2% plus or minus 2.9%, 10.2% plus or minus 3.5%, and 13.3% plus or minus 5.7% during expiration breath holding, deep-inspiration breath holding, and the valsalva maneuver, respectively, and these values did not differ significantly. Conclusions Spleen volume is reduced during short breath-hold apnea in healthy adults. Physiological responses of the spleen to respiratory manipulations should be considered in the measurement and interpretation of spleen volume.
Learning to Automatically Generate Fill-In-The-Blank Quizzes
In this paper we formalize the problem automatic fill-in-the-blank question generation using two standard NLP machine learning schemes, proposing concrete deep learning models for each. We present an empirical study based on data obtained from a language learning platform showing that both of our proposed settings offer promising results.
Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum
The algal pyrenoid is a large plastid body, where the majority of the CO₂-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) resides, and it is proposed to be the hub of the algal CO₂-concentrating mechanism(CCM) and CO₂ fixation. The thylakoid membrane is often in close proximity to or penetrates the pyrenoid itself, implying there is a functional cooperation between the pyrenoid and thylakoid. Here, GFP tagging and immunolocalization analyses revealed that a previously unidentified protein, Pt43233, is targeted to the lumen of the pyrenoid-penetrating thylakoid in the marine diatom Phaeodactylum tricornutum. The recombinant Pt43233 produced in Escherichia coli cells had both carbonic anhydrase (CA) and esterase activities. Furthermore, a Pt43233:GFP-fusion protein immunoprecipitated from P. tricornutum cells displayed a greater specific CA activity than detected for the purified recombinant protein. In an RNAi-generated Pt43233 knockdown mutant grown in atmospheric CO₂ levels, photosynthetic dissolved inorganic carbon (DIC) affinity was decreased and growth was constantly retarded; in contrast, overexpression of Pt43233:GFP yielded a slightly greater photosynthetic DIC affinity. The discovery of a θ-type CA localized to the thylakoid lumen, with an essential role in photosynthetic efficiency and growth, strongly suggests the existence of a common role for the thylakoid-luminal CA with respect to the function of diverse algal pyrenoids.
Transplantation of Mesenchymal Stem Cells Promotes an Alternative Pathway of Macrophage Activation and Functional Recovery after Spinal Cord Injury
Mesenchymal stem cells (MSC) derived from bone marrow can potentially reduce the acute inflammatory response in spinal cord injury (SCI) and thus promote functional recovery. However, the precise mechanisms through which transplanted MSC attenuate inflammation after SCI are still unclear. The present study was designed to investigate the effects of MSC transplantation with a special focus on their effect on macrophage activation after SCI. Rats were subjected to T9–T10 SCI by contusion, then treated 3 days later with transplantation of 1.0×106 PKH26-labeled MSC into the contusion epicenter. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels, and reductions in TNF-α and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased numbers of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional locomotion recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparing. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery.
Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury
The use of mesenchymal stromal cell (MSC) transplantation to repair the injured spinal cord has shown consistent benefits in preclinical models. However, the low survival rate of grafted MSC is one of the most important problems. In the injured spinal cord, transplanted cells are exposed to hypoxic conditions and exposed to nutritional deficiency caused by poor vascular supply. Also, the transplanted MSCs face cytotoxic stressors that cause cell death. The aim of this study was to compare adipose-derived MSCs (AD-MSCs) and bone marrow-derived MSCs (BM-MSCs) isolated from individual C57BL6/J mice in relation to: (i) cellular characteristics, (ii) tolerance to hypoxia, oxidative stress and serum-free conditions, and (iii) cellular survival rates after transplantation. AD-MSCs and BM-MSCs exhibited a similar cell surface marker profile, but expressed different levels of growth factors and cytokines. To research their relative stress tolerance, both types of stromal cells were incubated at 20.5% O2 or 1.0% O2 for 7 days. Results showed that AD-MSCs were more proliferative with greater culture viability under these hypoxic conditions than BM-MSCs. The MSCs were also incubated under H2O2-induced oxidative stress and in serum-free culture medium to induce stress. AD-MSCs were better able to tolerate these stress conditions than BM-MSCs; similarly when transplanted into the spinal cord injury region in vivo, AD-MSCs demonstrated a higher survival rate post transplantation Furthermore, this increased AD-MSC survival post transplantation was associated with preservation of axons and enhanced vascularization, as delineated by increases in anti-gamma isotype of protein kinase C and CD31 immunoreactivity, compared with the BM-MSC transplanted group. Hence, our results indicate that AD-MSCs are an attractive alternative to BM-MSCs for the treatment of severe spinal cord injury. However, it should be noted that the motor function was equally improved following moderate spinal cord injury in both groups, but with no significant improvement seen unfortunately following severe spinal cord injury in either group.
Adipose-Derived Mesenchymal Stromal Cell Transplantation for Severe Spinal Cord Injury: Functional Improvement Supported by Angiogenesis and Neuroprotection
Mesenchymal stromal cell transplantation alone is insufficient when motor dysfunction is severe; combination therapy with rehabilitation could improve motor function. Here, we aimed to analyze the characteristics of adipose-derived MSCs (AD-MSCs) and determine their effectiveness in severe spinal cord injury (SCI) treatment. A severe SCI model was created and motor function were compared. The rats were divided into AD-MSC-transplanted treadmill exercise-combined (AD-Ex), AD-MSC-transplanted non-exercise (AD-noEx), PBS-injected exercise (PBS-Ex), and no PBS-injected exercise (PBS-noEx) groups. In cultured cell experiments, AD-MSCs were subjected to oxidative stress, and the effects on the extracellular secretion of AD-MSCs were investigated using multiplex flow cytometry. We assessed angiogenesis and macrophage accumulation in the acute phase. Spinal cavity or scar size and axonal preservation were assessed histologically in the subacute phase. Significant motor function improvement was observed in the AD-Ex group. Vascular endothelial growth factor and C-C motif chemokine 2 expression in AD-MSC culture supernatants increased under oxidative stress. Enhanced angiogenesis and decreased macrophage accumulation were observed at 2 weeks post-transplantation, whereas spinal cord cavity or scar size and axonal preservation were observed at 4 weeks. Overall, AD-MSC transplantation combined with treadmill exercise training improved motor function in severe SCI. AD-MSC transplantation promoted angiogenesis and neuroprotection.