Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
15
result(s) for
"Aiza, Gemma"
Sort by:
Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are infrequent in familial colorectal cancer and polyposis
by
Lázaro, Conxi
,
Capellá, Gabriel
,
Aiza, Gemma
in
Adenomatous Polyposis Coli - genetics
,
Biomedical and Life Sciences
,
Biomedicine
2018
Germline mutations in
BUB1
and
BUB3
have been reported to increase the risk of developing colorectal cancer (CRC) at young age, in presence of variegated aneuploidy and reminiscent dysmorphic traits of mosaic variegated aneuploidy syndrome. We performed a mutational analysis of
BUB1
and
BUB3
in 456 uncharacterized mismatch repair-proficient hereditary non-polyposis CRC families and 88 polyposis cases. Four novel or rare germline variants, one splice-site and three missense, were identified in four families. Neither variegated aneuploidy nor dysmorphic traits were observed in carriers. Evident functional effects in the heterozygous form were observed for c.1965-1G>A, but not for c.2296G>A (p.E766K), in spite of the positive co-segregation in the family.
BUB1
c.2473C>T (p.P825S) and
BUB3
c.77C>T (p.T26I) remained as variants of uncertain significance. As of today, the rarity of functionally relevant mutations identified in familial and/or early onset series does not support the inclusion of
BUB1
and
BUB3
testing in routine genetic diagnostics of familial CRC.
Journal Article
Genetic determinants of methotrexate responsiveness and resistance in colon cancer cells
by
Peinado, Miguel A
,
Ribas, Maria
,
Aiza, Gemma
in
Antimetabolites, Antineoplastic - pharmacology
,
Apoptosis
,
Biological and medical sciences
2005
Alternative genetic pathways characterized by specific genetic profiles and exhibiting distinctive biological and clinical features have been proposed in colorectal carcinogenesis. Methotrexate (MTX) is a potent inhibitor of the dihydrofolate reductase (DHFR) enzyme, which is essential for DNA synthesis and cell growth. We have evaluated the association between different genetic features and the capacity to develop MTX resistance in colon cancer cell lines representative of alternative genetic pathways. Three aneuploid cell lines (HT-29, SW480, and SK-CO-1) showed pre-existing amplifications, but only one (HT-29) developed MTX resistance, showing amplification of the DHFR gene at 5q12–14 (>20-fold amplification and presence of extrachromosomal double minutes). Failure to develop resistance was attributed to the absence of two complete chromosomes 5 in SW480 and SK-CO-1 cells. Four near-diploid cell lines (LoVo, HCT116, DLD-1 and KM12C) and two aneuploid KM12C-derived metastases (KM12SM and KM12L4A) developed MTX resistance but none exhibited DHFR amplification. All resistant cells without DHFR gene amplification showed microsatellite instability. We conclude that chemoresistance capacity and the mechanism of chemoresistance are related with the genetic pathway and the karyotypic features of colon cancer cells.
Journal Article
POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance
by
Lázaro, Conxi
,
Puente, Diana A.
,
Soto, José Luís
in
692/420/2489/144
,
692/699/67/1504
,
692/700/228/2050/1512
2016
Germ-line mutations in the exonuclease domains of POLE and POLD1 have been recently associated with polyposis and colorectal cancer (CRC) predisposition. Here, we aimed to gain a better understanding of the phenotypic characteristics of this syndrome to establish specific criteria for POLE and POLD1 mutation screening and to help define the clinical management of mutation carriers.
The exonuclease domains of POLE and POLD1 were studied in 529 kindred, 441 with familial nonpolyposis CRC and 88 with polyposis, by using pooled DNA amplification and massively parallel sequencing.
Seven novel or rare genetic variants were identified. In addition to the POLE p.L424V recurrent mutation in a patient with polyposis, CRC and oligodendroglioma, six novel or rare POLD1 variants (four of them, p.D316H, p.D316G, p.R409W, and p.L474P, with strong evidence for pathogenicity) were identified in nonpolyposis CRC families. Phenotypic data from these and previously reported POLE/POLD1 carriers point to an associated phenotype characterized by attenuated or oligo-adenomatous colorectal polyposis, CRC, and probably brain tumors. In addition, POLD1 mutations predispose to endometrial and breast tumors.
Our results widen the phenotypic spectrum of the POLE/POLD1-associated syndrome and identify novel pathogenic variants. We propose guidelines for genetic testing and surveillance recommendations.
Journal Article
MBD4-associated neoplasia syndrome: screening of cases with suggestive phenotypes
by
Gonzalez-Abuin, Noemi
,
Valle, Laura
,
Capellá, Gabriel
in
Acute myeloid leukemia
,
Colorectal cancer
,
Colorectal carcinoma
2023
Germline mutations in MBD4, which, like MUTYH and NTHL1, encodes a glycosylase of the DNA based excision repair system, cause an autosomal recessive syndrome characterised by increased risk of acute myeloid leukaemia, gastrointestinal polyposis, colorectal cancer (CRC) and, to a lesser extent, uveal melanoma and schwannomas. To better define the phenotypic spectrum and tumour molecular features associated with biallelic MBD4-associated cancer predisposition, and study if heterozygous variants are associated with gastrointestinal tumour predisposition, we evaluated germline MBD4 status in 728 patients with CRC, polyposis, and other suggestive phenotypes (TCGA and in-house cohorts). Eight CRC patients carried rare homozygous or heterozygous germline variants in MBD4. The information gathered on mode of inheritance, variant nature, functional effect of the variant, and tumour mutational characteristics suggested that none of the patients included in the study had an MBD4-associated hereditary syndrome and that the heterozygous variants identified were not associated with the disease.
Journal Article
Discovery of recessive effect of human polymerase δ proofreading deficiency through mutational analysis of POLD1-mutated normal and cancer cells
by
Sánchez-Heras, Ana Beatriz
,
Borràs, Emma
,
Valle, Laura
in
Cancer
,
Colorectal cancer
,
Colorectal carcinoma
2024
Constitutional heterozygous pathogenic variants in the exonuclease domain of POLE and POLD1, which affect the proofreading activity of the corresponding polymerases, cause a cancer predisposition syndrome characterized by increased risk of gastrointestinal polyposis, colorectal cancer, endometrial cancer and other tumor types. The generally accepted explanation for the connection between the disruption of the proofreading activity of polymerases epsilon and delta and cancer development is through an increase in the somatic mutation rate. Here we studied an extended family with multiple members heterozygous for the pathogenic POLD1 variant c.1421T>C p.(Leu474Pro), which segregates with the polyposis and cancer phenotypes. Through the analysis of mutational patterns of patient-derived fibroblasts colonies and de novo mutations obtained by parent-offspring comparisons, we concluded that heterozygous POLD1 L474P just subtly increases the somatic and germline mutation burden. In contrast, tumors developed in individuals with a heterozygous mutation in the exonuclease domain of POLD1, including L474P, have an extremely high mutation rate (>100 mut/Mb) associated with signature SBS10d. We solved this contradiction through the observation that tumorigenesis involves somatic inactivation of the wildtype POLD1 allele. These results imply that exonuclease deficiency of polymerase delta has a recessive effect on mutation rate.
Journal Article
Germline NPAT inactivating variants as cause of hereditary colorectal cancer
by
Schubert, Stephanie A
,
Parra, Genís
,
Capellá, Gabriel
in
Aneuploidy
,
Cancer
,
Colorectal cancer
2024
Two independent exome sequencing initiatives aimed to identify new genes involved in the predisposition to nonpolyposis colorectal cancer led to the identification of heterozygous loss-of-function variants in NPAT, a gene that encodes a cyclin E/CDK2 effector required for S phase entry and a coactivator of histone transcription, in two families with multiple members affected with colorectal cancer. Enrichment of loss-of-function and predicted deleterious NPAT variants was identified in familial/early-onset colorectal cancer patients compared to non-cancer gnomAD individuals, further supporting the association with the disease. Previous studies in Drosophila models showed that NPAT abrogation results in chromosomal instability, increase of double strand breaks, and induction of tumour formation. In line with these results, colorectal cancers with NPAT somatic variants and no DNA repair defects have significantly higher aneuploidy levels than NPAT-wildtype colorectal cancers. In conclusion, our findings suggest that constitutional inactivating NPAT variants predispose to mismatch repair-proficient nonpolyposis colorectal cancer.
Journal Article
Potential Involvement of NSD1, KRT24 and ACACA in the Genetic Predisposition to Colorectal Cancer
2022
The ALFRED (Allelic Loss Featuring Rare Damaging) in silico method was developed to identify cancer predisposition genes through the identification of somatic second hits. By applying ALFRED to ~10,000 tumor exomes, 49 candidate genes were identified. We aimed to assess the causal association of the identified genes with colorectal cancer (CRC) predisposition. Of the 49 genes, NSD1, HDAC10, KRT24, ACACA and TP63 were selected based on specific criteria relevant for hereditary CRC genes. Gene sequencing was performed in 736 patients with familial/early onset CRC or polyposis without germline pathogenic variants in known genes. Twelve (predicted) damaging variants in 18 patients were identified. A gene-based burden test in 1596 familial/early-onset CRC patients, 271 polyposis patients, 543 TCGA CRC patients and >134,000 controls (gnomAD, non-cancer), revealed no clear association with CRC for any of the studied genes. Nevertheless, (non-significant) over-representation of disruptive variants in NSD1, KRT24 and ACACA in CRC patients compared to controls was observed. A somatic second hit was identified in one of 20 tumors tested, corresponding to an NSD1 carrier. In conclusion, most genes identified through the ALFRED in silico method were not relevant for CRC predisposition, although a possible association was detected for NSD1, KRT24 and ACACA.
Journal Article
Non-Lynch Familial and Early-Onset Colorectal Cancer Explained by Accumulation of Low-Risk Genetic Variants
2021
A large proportion of familial and/or early-onset cancer patients do not carry pathogenic variants in known cancer predisposing genes. We aimed to assess the contribution of previously validated low-risk colorectal cancer (CRC) alleles to familial/early-onset CRC (fCRC) and to serrated polyposis. We estimated the association of CRC with a 92-variant-based weighted polygenic risk score (wPRS) using 417 fCRC patients, 80 serrated polyposis patients, 1077 hospital-based incident CRC patients, and 1642 controls. The mean wPRS was significantly higher in fCRC than in controls or sporadic CRC patients. fCRC patients in the highest (20th) wPRS quantile were at four-fold greater CRC risk than those in the middle quantile (10th). Compared to low-wPRS fCRC, a higher number of high-wPRS fCRC patients had developed multiple primary CRCs, had CRC family history, and were diagnosed at age ≥50. No association with wPRS was observed for serrated polyposis. In conclusion, a relevant proportion of mismatch repair (MMR)-proficient fCRC cases might be explained by the accumulation of low-risk CRC alleles. Validation in independent cohorts and development of predictive models that include polygenic risk score (PRS) data and other CRC predisposing factors will determine the implementation of PRS into genetic testing and counselling in familial and early-onset CRC.
Journal Article
Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are infrequent in familial colorectal cancer and polyposis
by
Aiza, Gemma
,
Puente, Xose S
,
Valdés Mas, Rafael
in
Colorectal cancer
,
Càncer colorectal
,
Genetic diseases
2018
Germline mutations in BUB1 and BUB3 have been reported to increase the risk of developing colorectal cancer (CRC) at young age, in presence of variegated aneuploidy and reminiscent dysmorphic traits of mosaic variegated aneuploidy syndrome. We performed a mutational analysis of BUB1 and BUB3 in 456 uncharacterized mismatch repair-proficient hereditary non-polyposis CRC families and 88 polyposis cases. Four novel or rare germline variants, one splice-site and three missense, were identified in four families. Neither variegated aneuploidy nor dysmorphic traits were observed in carriers. Evident functional effects in the heterozygous form were observed for c.1965-1G>A, but not for c.2296G>A (p.E766K), in spite of the positive co-segregation in the family. BUB1 c.2473C>T (p.P825S) and BUB3 c.77C>T (p.T26I) remained as variants of uncertain significance. As of today, the rarity of functionally relevant mutations identified in familial and/or early onset series does not support the inclusion of BUB1 and BUB3 testing in routine genetic diagnostics of familial CRC.
Journal Article
Erratum: Scarce evidence of the causal role of germline mutations in UNC5C in hereditary colorectal cancer and polyposis
2016
Scientific Reports 6: Article number: 20697; published online: 08 February 2016; updated: 20 April 2016. The original version of this Article contained errors in the spelling of the authors Elena Sánchez-Cuartielles and Rafael Valdés-Mas which were incorrectly given as Sánchez-Cuartielles Elena and Valdés-Mas Rafael respectively.
Journal Article