Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Akashi-Takamura, Sachiko"
Sort by:
IRF3 function and immunological gaps in sepsis
Lipopolysaccharide (LPS) induces potent cell activation via Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD-2), often leading to septic death and cytokine storm. TLR4 signaling is diverted to the classical acute innate immune, inflammation-driving pathway in conjunction with the classical NF-κB pivot of MyD88, leading to epigenetic linkage shifts in nuclear pro-inflammatory transcription and chromatin structure-function; in addition, TLR4 signaling to the TIR domain-containing adapter-induced IFN-β (TRIF) apparatus and to nuclear pivots that signal the association of interferons alpha and beta (IFN-α and IFN-β) with acute inflammation, often coupled with oxidants favor inhibition or resistance to tissue injury. Although the immune response to LPS, which causes sepsis, has been clarified in this manner, there are still many current gaps in sepsis immunology to reduce mortality. Recently, selective agonists and inhibitors of LPS signals have been reported, and there are scattered reports on LPS tolerance and control of sepsis development. In particular, IRF3 signaling has been reported to be involved not only in sepsis but also in increased pathogen clearance associated with changes in the gut microbiota. Here, we summarize the LPS recognition system, main findings related to the IRF3, and finally immunological gaps in sepsis.
Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4
Gram-negative bacteria including Escherichia coli, Citrobacter rodentium, Salmonella typhimurium, and Shigella flexneri are sensed in an ill-defined manner by an intracellular inflammasome complex that activates caspase-11. We show that macrophages loaded with synthetic lipid A, E. coli lipopolysaccharide (LPS), or S. typhimurium LPS activate caspase-11 independently of the LPS receptor Toll-like receptor 4 (TLR4). Consistent with lipid A triggering the noncanonical inflammasome, LPS containing a divergent lipid A structure antagonized caspase-11 activation in response to E. coli LPS or Gram-negative bacteria. Moreover, LPS-mutant E. coli failed to activate caspase-11. Tlr4 -/- mice primed with TLR3 agonist polyinosinic:polycytidylic acid [poly(I:C)] to induce pro-caspase-11 expression were as susceptible as wild-type mice were to sepsis induced by E. coli LPS. These data unveil a TLR4-independent mechanism for innate immune recognition of LPS.
The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase
The production of chemoattractants in the pre-metastatic lung can be induced by distant primary tumours. The chemoattractants S100A8 and S100A9 induce serum amyloid A3 and TLR4 activation and cause an inflammation-like state that facilitates metastasis. A large number of macrophages and haematopoietic progenitor cells accumulate in pre-metastatic lungs 1 , 2 in which chemoattractants, such as S100A8 and S100A9, are produced by distant primary tumours serving as metastatic soil 3 . The exact mechanism by which these chemoattractants elicit cell accumulation is not known. Here, we show that serum amyloid A (SAA) 3, which is induced in pre-metastatic lungs by S100A8 and S100A9, has a role in the accumulation of myeloid cells and acts as a positive-feedback regulator for chemoattractant secretion. We also show that in lung endothelial cells and macrophages, Toll-like receptor (TLR) 4 acts as a functional receptor for SAA3 in the pre-metastatic phase. In our study, SAA3 stimulated NF-κB signalling in a TLR4-dependent manner and facilitated metastasis. This inflammation-like state accelerated the migration of primary tumour cells to lung tissues, but this was suppressed by the inhibition of either TLR4 or SAA3. Thus, blocking SAA3–TLR4 function in the pre-metastatic phase could prove to be an effective strategy for the prevention of pulmonary metastasis.
Enhanced lymphocyte infiltration in the liver of LDL receptor and Myeloid Differentiation 1 double knockout mice on high fat diet
Myeloid differentiation 1 (MD-1; gene name: ly86 ), a glycoprotein that forms a complex with radioprotective protein 105 (RP105), is involved in the regulation of inflammation, obesity, and insulin resistance. Previous reports have shown an exacerbation of cardiac pathology in MD-1 deficient mice, including pressure overload-induced cardiac remodeling and high fat diet (HFD) -induced inflammatory atrial fibrosis. Furthermore, MD-1 expression is upregulated in atherosclerosis, as indicated by DEG database analysis, and is present in human atherosclerotic plaques. However, its involvement in atherosclerosis is unclear. In this study, we analyzed the effect of MD-1 deficiency on the development of HFD-induced atherosclerosis in littermates of low-density lipoprotein (LDL) receptor-deficient mice (LDLr −/− /MD-1 +/− and LDLr −/− /MD-1 −/− ). In contrast to RP105 deficient mice in previous reports, MD-1 deficiency did not clearly influence atherosclerosis development. However, LDLr −/− /MD-1 −/− mice exhibited significantly higher serum levels of total protein, triglycerides, cholesterol, LC/MS-detected lipophilic compounds, and an increased peripheral B-cell percentage with a Th2 antibody shift after 24 weeks of HFD. Furthermore, lymphocyte infiltration, predominantly of B2B cells and CD4 + T cells, was visible in random cross-sectional liver sections from LDLr −/− /MD-1 −/− mice. Our results indicated that MD-1 deficiency leads to further hyperlipidemia, Th2 shift, and enhances lymphocyte infiltration in the LDLr −/− liver.
Coagulation Factor X Activates Innate Immunity to Human Species C Adenovirus
Although coagulation factors play a role in host defense for \"living fossils\" such as horseshoe crabs, the role of the coagulation system in immunity in higher organisms remains unclear. We modeled the interface of human species C adenovirus (HAdv) interaction with coagulation factor X (FX) and introduced a mutation that abrogated formation of the HAdv-FX complex. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of nuclear factor kB-dependent early-response genes that are activated by HAdv-FX complex downstream of TLR4/MyD88/TRIF/TRAF6 signaling. Our study implicates host factor \"decoration\" of the virus as a mechanism to trigger an innate immune sensor that responds to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell.
Dietary Supplementation With Eicosapentaenoic Acid Inhibits Plasma Cell Differentiation and Attenuates Lupus Autoimmunity
Accumulating evidence suggests that cholesterol accumulation in leukocytes is causally associated with the development of autoimmune diseases. However, the mechanism by which fatty acid composition influences autoimmune responses remains unclear. To determine whether the fatty acid composition of diet modulates leukocyte function and the development of systemic lupus erythematosus, we examined the effect of eicosapentaenoic acid (EPA) on the pathology of lupus in drug-induced and spontaneous mouse models. We found that dietary EPA supplementation ameliorated representative lupus manifestations, including autoantibody production and immunocomplex deposition in the kidneys. A combination of lipidomic and membrane dynamics analyses revealed that EPA remodels the lipid composition and fluidity of B cell membranes, thereby preventing B cell differentiation into autoantibody-producing plasma cells. These results highlight a previously unrecognized mechanism by which fatty acid composition affects B cell differentiation into autoantibody-producing plasma cells during autoimmunity, and imply that EPA supplementation may be beneficial for therapy of lupus.
Broadly Neutralizing Antibodies for Influenza: Passive Immunotherapy and Intranasal Vaccination
Influenza viruses cause annual epidemics and occasional pandemics. The high diversity of viral envelope proteins permits viruses to escape host immunity. Therefore, the development of a universal vaccine and broadly neutralizing antibodies (bnAbs) is essential for controlling various mutant viruses. Here, we review some potentially valuable bnAbs for influenza; one is a novel passive immunotherapy using a variable domain of heavy chain-only antibody (VHH), and the other is polymeric immunoglobulin A (pIgA) induced by intranasal vaccination. Recently, it was reported that a tetravalent multidomain antibody (MDAb) was developed by genetic fusion of four VHHs, which are bnAbs against the influenza A or B viruses. The transfer of a gene encoding the MDAb–Fc fusion protein provided cross-protection against both influenza A and B viruses in vivo. An intranasal universal influenza vaccine, which can induce neutralizing pIgAs in the upper respiratory tract, is currently undergoing clinical studies. A recent study has revealed that tetrameric IgAs formed in nasal mucosa are more broadly protective against influenza than the monomeric and dimeric forms. These broadly neutralizing antibodies have high potential to control the currently circulating influenza virus.
Detection of Urinary Antibodies and Its Application in Epidemiological Studies for Parasitic Diseases
For epidemiological studies of infectious diseases, pathogen-specific antibody levels in an area give us essential and appropriate information. The antibodies against pathogens are usually detected in blood, the drawing of which inconveniences people. Collection of blood increases the risk of accidental infections through blood, and it is difficult to obtain the participation of the target populations, especially the younger generation. On the other hand, urine samples, which contain a high enough level of antibodies for ELISA, can be harmlessly and easily collected and therefore have been used for epidemiological studies for diseases. The antibody examination of urine has been used for the epidemiology of parasitic diseases with a high sensitivity and specificity of serum samples. In this paper, we reviewed antibody assays with urine for seven parasitic diseases that urine diagnostic methods have reported in the past, and these are important infections included in NTDs, caused, for example, by Leishmania donovani, Wuchereria bancrofti, Schistosoma japonicum, Paragonimus westermani, Echinococcus granulosus, Echinococcus multilocularis, Strongyloides stercoralis, and Opisthorchis viverrini. The easy and safe urine surveillance system might be an admirable tool for future epidemiological studies for infectious diseases.
TLR4–MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide
Although endogenous ligands for Toll-like receptor (TLR)4–myeloid differentiation factor 2 (MD2) have not been well-understood, we here report that a globo-series glycosphingolipid, globotetraosylceramide (Gb4), attenuates the toxicity of lipopolysaccharides (LPSs) by binding to TLR4–MD-2. Because α1,4-galactosyltransferase (A4galt)-deficient mice lacking globo-series glycosphingolipids showed higher sensitivity to LPS than wild-type mice, we examined mechanisms by which globo-series glycosphingolipids attenuate LPS toxicity. Cultured endothelial cells lacking A4galt showed higher expression of LPS-inducible genes upon LPS treatment. In turn, introduction of A4galt cDNA resulted in the neo expression of Gb4, leading to the reduced expression of LPS-inducible genes. Exogenous Gb4 induced similar effects. As a mechanism for the suppressive effects of Gb4 on LPS signals, specific binding of Gb4 to the LPS receptor TLR4–MD-2 was demonstrated by coprecipitation of Gb4 with recombinant MD-2 and by native PAGE. A docking model also supported these data. Taken together with colocalization of TLR4–MD-2 with Gb4 in lipid rafts after LPS stimulation, it was suggested that Gb4 competes with LPS for binding to TLR4–MD-2. Finally, administration of Gb4 significantly protected mice from LPS-elicited mortality. These results suggest that Gb4 is an endogenous ligand for TLR4–MD-2 and is capable of attenuating LPS toxicity, indicating the possibility for its therapeutic application in endotoxin shock.
A Novel Gene Delivery Vector of Agonistic Anti-Radioprotective 105 Expressed on Cell Membranes Shows Adjuvant Effect for DNA Immunization Against Influenza
Radioprotective 105 (RP105) (also termed CD180) is an orphan and unconventional Toll-like receptor (TLR) that lacks an intracellular signaling domain. The agonistic anti-RP105 monoclonal antibody (mAb) can cross-link RP105 on B cells, resulting in the proliferation and activation of B cells. Anti-RP105 mAb also has a potent adjuvant effect, providing higher levels of antigen-specific antibodies compared to alum. However, adjuvanticity is required for the covalent link between anti-RP105 mAb and the antigen. This is a possible obstacle to immunization due to the link between anti-RP105 mAb and some antigens, especially multi-transmembrane proteins. We have previously succeeded in inducing rapid and potent recombinant mAbs in mice using antibody gene-based delivery. To simplify the covalent link between anti-RP105 mAb and antigens, we generated genetic constructs of recombinant anti-RP105 mAb (αRP105) bound to the transmembrane domain of the IgG-B cell receptor (TM) (αRP105-TM), which could enable the anti-RP105 mAb to link the antigen via the cell membrane. We confirmed the expression of αRP105-TM and the antigen hemagglutinin, which is a membrane protein of the influenza virus, on the same cell. We also found that αRP105-TM could activate splenic B cells, including both mature and immature cells, depending on the cell surface RP105 in vitro . To evaluate the adjuvanticity of αRP105-TM, we conducted DNA immunization in mice with the plasmids encoding αRP105-TM and hemagglutinin, followed by challenge with an infection of a lethal dose of an influenza virus. We then obtained partially but significantly hemagglutinin-specific antibodies and observed protective effects against a lethal dose of influenza virus infection. The current αRP105-TM might provide adjuvanticity for a vaccine via a simple preparation of the expression plasmids encoding αRP105-TM and of that encoding the target antigen.