Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
73 result(s) for "Akinori Ueno"
Sort by:
Capacitive-Coupling Impedance Spectroscopy Using a Non-Sinusoidal Oscillator and Discrete-Time Fourier Transform: An Introductory Study
In this study, we propose a new short-time impedance spectroscopy method with the following three features: (1) A frequency spectrum of complex impedance for the measured object can be obtained even when the measuring electrodes are capacitively coupled with the object and the precise capacitance of the coupling is unknown; (2) the spectrum can be obtained from only one cycle of the non-sinusoidal oscillation waveform without sweeping the oscillation frequency; and (3) a front-end measuring circuit can be built, simply and cheaply, without the need for a digital-to-analog (D-A) converter to synthesize elaborate waveforms comprising multiple frequencies. We built the measurement circuit using the proposed method and then measured the complex impedance spectra of 18 resistive elements connected in series with one of three respective capacitive couplings. With this method, each element’s resistance and each coupling’s capacitance were estimated independently and compared with their nominal values. When the coupling capacitance was set to 10 nF or 1.0 nF, estimated errors for the resistive elements in the range of 2.0–10.0 kΩ were less than 5%.
FPGA-Based Processor for Continual Capacitive-Coupling Impedance Spectroscopy and Circuit Parameter Estimation
In principle, the recently proposed capacitive-coupling impedance spectroscopy (CIS) has the capability to acquire frequency spectra of complex electrical impedance sequentially on a millisecond timescale. Even when the measured object with time-varying unknown resistance Rx is capacitively coupled with the measurement electrodes with time-varying unknown capacitance Cx, CIS can be measured. As a proof of concept, this study aimed to develop a prototype that implemented the novel algorithm of CIS and circuit parameter estimation to verify whether the frequency spectra and circuit parameters could be obtained in milliseconds and whether time-varying impedance could be measured. This study proposes a dedicated processor that was implemented as field-programmable gate arrays to perform CIS, estimate Rx and Cx, and their digital-to-analog conversions at a certain time, and to repeat them continually. The proposed processor executed the entire sequence in the order of milliseconds. Combined with a front-end nonsinusoidal oscillator and interfacing circuits, the processor estimated the fixed Rx and fixed Cx with reasonable accuracy. Additionally, the combined system with the processor succeeded in detecting a quick optical response in the resistance of the cadmium sulfide (CdS) photocell connected in series with a capacitor, and in reading out their resistance and capacitance independently as voltages in real-time.
A Novel Analog Front End with Voltage-Dependent Input Impedance and Bandpass Amplification for Capacitive Biopotential Measurements
This paper proposes a novel analogue front end (AFE) that has three features: voltage-dependent input impedance, bandpass amplification, and stray capacitance reduction. With a view to applying the AFE to capacitive biopotential measurements (CBMs), the three features were investigated separately in a schematic and mathematical manner. Capacitive electrocardiogram (cECG) or capacitive electromyogram (cEMG) measurements using the AFE were performed in low-humidity conditions (below 35% relative humidity) for a total of seven human subjects. Performance evaluation of the AFE revealed the following: (1) the proposed AFE in cECG measurement with 1.70-mm thick clothing reduced the baseline recovery time and root mean square voltage of respiratory interference in subjects with healthy-weight body mass index (BMI), and increased R-wave amplitude for overweight-BMI subjects; and (2) the proposed AFE in cEMG measurement of biceps brachii muscle yielded stable electromyographic waveforms without the marked DC component for all subjects and a significant (p < 0.01) increase in the signal-to-noise ratio. These results indicate that the proposed AFE can provide a feasible balance between sensitivity and stability in CBMs, and it could be a versatile replacement for the conventional voltage follower used in CBMs.
Short-Time Impedance Spectroscopy Using a Mode-Switching Nonsinusoidal Oscillator: Applicability to Biological Tissues and Continuous Measurement
Herein, we propose an impedance spectroscopy method using a mode-switching nonsinusoidal oscillator and apply this method for measuring the impedance of biological tissues and continuous impedance measurement. To obtain impedance spectra over a wide frequency range, we fabricated a novel nonsinusoidal oscillator incorporating binary counters and analog switches. This oscillator could periodically switch oscillation frequency through the mode switching of the feedback resistor. From the oscillation waveform at each oscillation frequency of this circuit (oscillator), we determined the impedance spectrum of a measured object using the discrete-time Fourier transform. Subsequently, we obtained the broad impedance spectrum of the measured object by merging odd-order harmonic spectral components up to the 19th order for each oscillation frequency. From the measured spectrum, the resistive and capacitive components of the circuit simulating bioimpedance were estimated with high accuracy. Moreover, the proposed method was used to measure the impedance of porcine myocardium; changes in the impedance spectrum of the myocardial tissue due to coagulation could be measured. Furthermore, rapid variations in the resistance value of a CdS photocell could be continuously measured using the proposed method.
Non-Contact Measurements of Electrocardiogram and Cough-Associated Electromyogram from the Neck Using In-Pillow Common Cloth Electrodes: A Proof-of-Concept Study
Asthma and chronic obstructive pulmonary disease are associated with nocturnal cough and changes in heart rate. In this work, the authors propose a proof-of-concept non-contact system for performing capacitive electrocardiogram (cECG) and cough-associated capacitive electromyogram (cEMG) measurements using cloth electrodes under a pillowcase. Two electrodes were located along with the approximate vector of lead II ECG and were used for both cECG and cEMG measurements. A signature voltage follower was introduced after each electrode to detect biopotentials with amplitudes of approximately 100 µV. A bootstrapping technique and nonlinear electrical component were combined and implemented in the voltage follower to attain a high input impedance and rapid static discharge. The measurement system was evaluated in a laboratory experiment for seven adult males and one female (average age: 22.5 ± 1.3 yr). The accuracy of R-wave detection for 2-min resting periods was 100% in six subjects, with an overall average of 87.5% ± 30.0%. Clearly visible cEMGs were obtained for each cough motion for all subjects, synchronized with reference EMGs from submental muscle. Although there remains room for improvement in practical use, the proposed system is promising for unobtrusive detection of heart rate and cough over a prolonged period of time.
Changes in the Comprehensiveness of Rural Medical Care for Older Japanese Patients during the COVID-19 Pandemic
Help-seeking behaviors (HSBs) refer to how people use lay and medical care to address their symptoms and diseases. The COVID-19 pandemic may have changed older, rural patients’ preferences and experiences regarding HSBs, thereby, affecting the comprehensiveness of medical support for communities. This study identified changes in the comprehensiveness of medical care for older, rural patients, who are often dependent on others for accessing medical services. This observational study was performed with patients who lived in Unnan City. Patients’ dependency and changes in comprehensiveness of medical services were assessed and calculated. The total usage of medical care decreased from 2018 to 2020 at all medical care levels. The proportion of patients who received comprehensive care was higher in 2020 than in 2018, at all care levels. At care dependent levels 3 to 5, the differences in the proportions were statistically significant. This study illustrates an association between the COVID-19 pandemic and the proportion of comprehensiveness of medical care among older rural patients with a decrease in medical care usage. Moreover, an improved proportion of comprehensiveness of medical care leads to appropriate HSBs. Going forward, HSBs and patient-centered care should be promoted by policy makers.
Real-Time Monitoring of Critical Quality Attributes during High-Shear Wet Granulation Process by Near-Infrared Spectroscopy Effect of Water Addition and Stirring Speed on Pharmaceutical Properties of the Granules
To produce high-quality pharmaceuticals, a real-time monitoring method for the high-shear wet granulation process (HSWG) was developed based on near-infrared spectroscopy (NIRS). Samples consisting of lactose, potato starch, and hydroxypropyl cellulose were prepared using HSWG with varying amounts of purified water (80, 90, and 100 mL) and impeller speed (200, 400, and 600 rpm), which produces granules of different characteristics. Twelve batches of samples were used for the calibration and nine batches were used for validation. After drying, the median particle size (D50), tapped density (TD), and Hauser ratio (HR) were measured. The best calibration models to predict moisture content (MC), D50, TD, and HR were determined based on pretreated NIR spectra using partial least squares regression analysis (PLSR). The temporal changes in the pharmaceutical properties under different amounts of water added and stirring speed were monitored in real time using NIRS/PLSR. Because the most important critical quality attribute (CQA) in the process was MC, granule characteristics such as D50, TD, and HR were analyzed with respect to MC. They might be used as robust and simple monitoring methods based on MC to evaluate the pharmaceutical properties of HSWG granules.
Analysis of granulation mechanism in a high-shear wet granulation method using near-infrared spectroscopy and stirring power consumption
The dynamic granulation process of high-speed shear wet granulation (HSWG) was measured by in-line near-infrared spectroscopy (NIRS) and agitation power consumption (APC) methods. Molecular interactions between powder particles and the binding liquid were analyzed based on both NIRS and APC data by multivariable regression analysis. The granulated sample used glass beads (d50 = 46 μm) with or without hydroxypropyl cellulose, and the binder solution used purified water. The HSWG granulator (2-L volume) with APC device and NIRS was used, and the agitator was rotated at 600 min−1 and the chopper at 2000 min−1 with glass beads to be granulated being 920 g (0.6 L), and a total of 360 mL of purified water was added at 10 mL/min. In order to establish calibration models to predict APC and amount of binding water of the granular formulations, NIRS spectra of the granular samples were recorded every 10 s for 40 min. The calibration models to predict moisture content and APC were constructed based on the corrected NIRS spectral data by partial least-squares regression (PLSR) analysis. The relationships between actual and predicted values for moisture content and APC produced a straight line, respectively. The regression vector (RV) of the PLS model to predict the water content showed the presence of free water between the bead powder particles. On the other hand, the RV for the APC showed the presence of bound water between the particles.
Cuffless Continuous Estimation of Relative Mean Arterial Pressure Using Unrestrained and Noncontact Ballistocardiogram and Electrocardiogram: Evaluation in Short Time In-bed Experiments
To facilitate capturing the characteristic variations of blood pressure (BP) such as BP surges during the nocturnal period, the in-bed continuous daily measurement of BP may be useful. In this study, we proposed and evaluated a method for cuffless continuous estimation of relative mean arterial pressure (MAP) using capacitive ballistocardiogram (cBCG) and electrocardiogram (cECG) measured using an unrestrained and noncontact method. We adapted a well-known equation for calculating MAP, which is equal to the product of cardiac output and peripheral vascular resistance. We then derived an estimation formula for the relative MAP using the J–K amplitude from the cBCG, heart rate from the cECG, and pulse beat arrival time calculated from the cBCG and cECG. To determine the coefficients for the estimation formula, we measured the MAP of a subject with a commercial device and used the least squares method. To obtain input data for the estimation formula, the cBCG from the heel of the right leg and cECG from the back of the subject were measured simultaneously with capacitively coupled electrodes placed under a bed sheet. The total length of the input data was 80 s for each Valsalva test (VT), and the Valsalva maneuver was used to increase BP during measurement. The data for each VT was separated into a training segment (Tr) and a test segment (Te). To evaluate the proposed estimation method, the following indices were calculated for each VT in 7 subjects: (1) correlation coefficient (CC) between estimated and reference MAP values, (2) confidence interval (CI), and (3) root mean square error (RMSE). For the Tr, average CC was 0.93 ± 0.06, average CI was 2.96 ± 1.29 mmHg, and average RMSE was 0.75 ± 0.33 mmHg. Furthermore, average RMSE for the Te was 2.49 ± 2.22 mmHg. These results indicate that the continuous cuffless method proposed in this study can be used for estimating relative MAP over a short time period. As the subjects in this study were all men in their early twenties, further validation in diverse subjects is required for broad application of the proposed method.
Comprehensive Care through Family Medicine: Improving the Sustainability of Aging Societies
Comprehensive care through family medicine can enhance the approach to multimorbidity, interprofessional collaboration, and community care, and make medical care more sustainable for older people. This study investigated the effect of implementing family medicine and the comprehensiveness of medical care in one of the most rural communities. This implementation research used medical care data from April 2015 to March 2020. Patients’ diagnoses were categorized according to the 10th revision of the International Statistical Classification of Disease and Related Health Problems (ICD-10). In 2016, family medicine was implemented in only one general hospital in Unnan. The comprehensiveness rate improved in all ICD-10 disease categories during the study period, especially in the following categories—infections; neoplasms; endocrine, nutritional, and metabolic diseases; mental disorders; nervous system; circulatory system; respiratory system; digestive system; skin and subcutaneous tissue; musculoskeletal system and connective tissue; and the genitourinary system. Implementing family medicine in rural Japanese communities can improve the comprehensiveness of medical care and resolve the issue of fragmentation of care by improving interprofessional collaboration and community care. It can be a solution for the aging of both patient and healthcare professionals. Future research can investigate the relationship between family medicine and patient health outcomes for improved healthcare sustainability.