Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Akondy, Rama S."
Sort by:
CXCL13 is a plasma biomarker of germinal center activity
Significantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4+ T follicular helper (GC Tfh) cells problematic. The CXCL13–CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS⁺ (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings.
Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination
Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.
Human Ebola virus infection results in substantial immune activation
Significance In 2014, Ebola virus became a household term. The ongoing outbreak in West Africa is the largest Ebola virus outbreak ever recorded, with over 20,000 cases and over 8,000 deaths to date. Very little is known about the human cellular immune response to Ebola virus infection, and this lack of knowledge has hindered development of effective therapies and vaccines. In this study, we characterize the human immune response to Ebola virus infection in four patients. We define the kinetics of T- and B-cell activation, and determine which viral proteins are targets of the Ebola virus-specific T-cell response in humans. Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10–50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1–2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients’ discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.
Characterization of Virus-specific Immune Response During Varicella Zoster Virus Encephalitis in a Young Adult
An immunocompetent adult received corticosteroids for chest pain, which later was clinically found to be herpes zoster (HZ). She developed severe disease and rapid viral dissemination that elicited an exceptionally strong varicella zoster virus–specific B-cell and CD8 T-cell response. Clinicians should consider atypical HZ presentation prior to corticosteroid administration.
Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients
Exhausted T cells in chronic infections and cancer have sustained expression of the inhibitory receptor programmed cell death 1 (PD-1). Therapies that block the PD-1 pathway have shown promising clinical results in a significant number of advanced-stage cancer patients. Nonetheless, a better understanding of the immunological responses induced by PD-1 blockade in cancer patients is lacking. Identification of predictive biomarkers is a priority in the field, but whether peripheral blood analysis can provide biomarkers to monitor or predict patients’ responses to treatment remains to be resolved. In this study, we analyzed longitudinal blood samples from advanced stage non–small cell lung cancer (NSCLC) patients (n = 29) receiving PD-1–targeted therapies. We detected an increase in Ki-67+ PD-1+ CD8 T cells following therapy in ∼70% of patients, and most responses were induced after the first or second treatment cycle. This T-cell activation was not indiscriminate because we observed only minimal effects on EBV-specific CD8 T cells, suggesting that responding cells may be tumor specific. These proliferating CD8 T cells had an effector-like phenotype (HLA-DR⁺, CD38⁺, Bcl-2lo), expressed costimulatory molecules (CD28, CD27, ICOS), and had high levels of PD-1 and coexpression of CTLA-4. We found that 70% of patients with disease progression had either a delayed or absent PD-1+ CD8 T-cell response, whereas 80% of patients with clinical benefit exhibited PD-1+ CD8 T-cell responses within 4 wk of treatment initiation. Our results suggest that peripheral blood analysis may provide valuable insights into NSCLC patients’ responses to PD-1–targeted therapies.
Origin and differentiation of human memory CD8 T cells after vaccination
The differentiation of human memory CD8 T cells is not well understood. Here we address this issue using the live yellow fever virus (YFV) vaccine, which induces long-term immunity in humans. We used in vivo deuterium labelling to mark CD8 T cells that proliferated in response to the virus and then assessed cellular turnover and longevity by quantifying deuterium dilution kinetics in YFV-specific CD8 T cells using mass spectrometry. This longitudinal analysis showed that the memory pool originates from CD8 T cells that divided extensively during the first two weeks after infection and is maintained by quiescent cells that divide less than once every year (doubling time of over 450 days). Although these long-lived YFV-specific memory CD8 T cells did not express effector molecules, their epigenetic landscape resembled that of effector CD8 T cells. This open chromatin profile at effector genes was maintained in memory CD8 T cells isolated even a decade after vaccination, indicating that these cells retain an epigenetic fingerprint of their effector history and remain poised to respond rapidly upon re-exposure to the pathogen. In vivo deuterium labelling reveals a quiescent population of long-lived human virus-specific memory CD8 T cells that maintain the epigenetic landscape of effector cells, which facilitates rapid responses to pathogen re-exposure. A pathogen to remember Memory cells protect against reinfection, or protect against infection after vaccination, but whether they are derived from naive or effector T cells is unknown. Rafi Ahmed and colleagues study the generation, maintenance and characteristics of long-lived memory CD8 T cells in humans after yellow fever vaccination and deuterium labelling. The study demonstrates that long-lived memory CD8 T cells are derived from cells that have divided extensively during the effector phase of the infection. Quiescent memory cells appear to revert to a naive phenotype but maintain an upregulated pattern of gene regulation that resembles effector T cells. In a second paper in this issue, Rafi Ahmed and colleagues examine changes in DNA methylation during effector and memory CD8 T cell differentiation, providing support for a model in which long-lived memory cells arise from a precursor of effector cells.
Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans
A major challenge for vaccinologists is to understand vaccine immunogenicity. Pulendran and colleagues use systems biology to determine gene 'signatures' that predict CD8 + T cell and antibody responses to the yellow fever vaccine. A major challenge in vaccinology is to prospectively determine vaccine efficacy. Here we have used a systems biology approach to identify early gene 'signatures' that predicted immune responses in humans vaccinated with yellow fever vaccine YF-17D. Vaccination induced genes that regulate virus innate sensing and type I interferon production. Computational analyses identified a gene signature, including complement protein C1qB and eukaryotic translation initiation factor 2 alpha kinase 4—an orchestrator of the integrated stress response—that correlated with and predicted YF-17D CD8 + T cell responses with up to 90% accuracy in an independent, blinded trial. A distinct signature, including B cell growth factor TNFRS17 , predicted the neutralizing antibody response with up to 100% accuracy. These data highlight the utility of systems biology approaches in predicting vaccine efficacy.
Insights into human CD8+ T‐cell memory using the yellow fever and smallpox vaccines
Live virus vaccines provide a unique opportunity to study human CD8+ T‐cell memory in the context of a controlled, primary acute viral infection. Yellow fever virus‐17D and Dryvax are two such live‐virus vaccines that are highly efficacious, used worldwide and provide long‐term immunity against yellow fever and smallpox respectively. In this review, we describe the properties of virus‐specific memory CD8+ T cells generated in smallpox and yellow fever vaccinees. We address fundamental questions regarding magnitude, functional quality and longevity of the CD8+ T‐cell response, which are otherwise challenging to address in humans. These findings provide insights into the attributes of the human immune system as well as provide a benchmark for the optimal quality of a CD8+ T‐cell response that can be used to evaluate novel candidate vaccines. In the late 19th and early 20th century much progress was made in our understanding of human immune regulation. However, the focus on the human aspect of immunology was somewhat diverted with the advent of murine models. The March/April 2011 Special Feature on Human Immunology highlights the current and emerging areas of basic and translational research in this field. The reviews cover a range of topics, including human regulatory T cells, T‐cell responses to herpesviruses, T‐cell receptor selection, immune evasion mechanisms, humanized murine models, challenges in vaccine design, and application of a systems biology approach to identify biomarkers of successful vaccines. The web focus on the same topic provides some further reading from across the Nature Publishing Group.
Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination
Significance Current vaccine development against persistent infections such as HIV and tuberculosis focuses on eliciting CD8 T cell immunity through the use of replication-incompetent or single-cycle vectors. Although inherently safe, these vectors deliver limited amounts of antigen. We investigate how antigen load affects the CD8 response by analyzing the viral load and the magnitude of the specific CD8 response after immunization with the live attenuated yellow fever vaccine (YFV-17D). Our results show that the magnitude of the CD8 response is proportional to the amount of antigen when virus load is below a threshold value and saturates above. This finding highlights the requirement that T cell-based vaccines deliver sufficient antigen to elicit a large CD8 response that may be needed for protection. CD8 T cells are a potent tool for eliminating intracellular pathogens and tumor cells. Thus, eliciting robust CD8 T-cell immunity is the basis for many vaccines under development. However, the relationship between antigen load and the magnitude of the CD8 T-cell response is not well-described in a human immune response. Here we address this issue by quantifying viral load and the CD8 T-cell response in a cohort of 80 individuals immunized with the live attenuated yellow fever vaccine (YFV-17D) by sampling peripheral blood at days 0, 1, 2, 3, 5, 7, 9, 11, 14, 30, and 90. When the virus load was below a threshold (peak virus load < 225 genomes per mL, or integrated virus load < 400 genome days per mL), the magnitude of the CD8 T-cell response correlated strongly with the virus load ( R ² ∼ 0.63). As the virus load increased above this threshold, the magnitude of the CD8 T-cell responses saturated. Recent advances in CD8 T-cell–based vaccines have focused on replication-incompetent or single-cycle vectors. However, these approaches deliver relatively limited amounts of antigen after immunization. Our results highlight the requirement that T-cell–based vaccines should deliver sufficient antigen during the initial period of the immune response to elicit a large number of CD8 T cells that may be needed for protection.
A Case of Human Lassa Virus Infection With Robust Acute T-Cell Activation and Long-Term Virus-Specific T-Cell Responses
A nurse who acquired Lassa virus infection in Togo in the spring of 2016 was repatriated to the United States for care at Emory University Hospital. Serial sampling from this patient permitted the characterization of several aspects of the innate and cellular immune responses to Lassa virus. Although most of the immune responses correlated with the kinetics of viremia resolution, the CD8 T-cell response was of surprisingly high magnitude and prolonged duration, implying prolonged presentation of viral antigens. Indeed, long after viremia resolution, there was persistent viral RNA detected in the semen of the patient, accompanied by epididymitis, suggesting the male reproductive tract as 1 site of antigen persistence. Consistent with the magnitude of acute T-cell responses, the patient ultimately developed long-term, polyfunctional memory T-cell responses to Lassa virus.