Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
173 result(s) for "Aksenov, Alexander"
Sort by:
Direct Conversion of 3-(2-Nitroethyl)-1H-Indoles into 2-(1H-Indol-2-yl)Acetonitriles
The recently discovered [4+1]-spirocyclization of nitroalkenes to indoles provided a convenient new approach to 2-(1H-indol-2-yl)acetonitriles. However, this reaction was complicated by the formation of inert 3-(2-nitroethyl)-1H-indole byproducts. Herein, we offer a workaround this problem that allows for effective transformation of the unwanted byproducts into acetonitrile target molecules.
SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information
Mass spectrometry is a predominant experimental technique in metabolomics and related fields, but metabolite structural elucidation remains highly challenging. We report SIRIUS 4 (https://bio.informatik.uni-jena.de/sirius/), which provides a fast computational approach for molecular structure identification. SIRIUS 4 integrates CSI:FingerID for searching in molecular structure databases. Using SIRIUS 4, we achieved identification rates of more than 70% on challenging metabolomics datasets.SIRIUS 4 is a fast and highly accurate tool for molecular structure interpretation from mass-spectrometry-based metabolomics data.
Spatial chemistry of citrus reveals molecules bactericidal to Candidatus Liberibacter asiaticus
Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (C Las), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB-infected trees. We demonstrate how spatial information from molecular maps of branches and single leaves yields insight into the biology not accessible otherwise. In particular, we found evidence that flavonoid biosynthesis is disrupted in HLB-infected trees, and an increase in the polyamine, feruloylputrescine, is highly correlated with an increase in disease severity. Based on mechanistic details revealed by these molecular maps, followed by metabolic modeling, we formulated and tested the hypothesis that C Las infection either directly or indirectly converts the precursor compound, ferulic acid, to feruloylputrescine to suppress the antimicrobial effects of ferulic acid and biosynthetically downstream flavonoids. Using in vitro bioassays, we demonstrated that ferulic acid and bioflavonoids are indeed highly bactericidal to C Las, with the activity on par with a reference antibiotic, oxytetracycline, recently approved for HLB management. We propose these compounds should be evaluated as therapeutics alternatives to the antibiotics for HLB treatment. Overall, the utilized 3D metabolic mapping approach provides a promising methodological framework to identify pathogen-specific inhibitory compounds in planta for potential prophylactic or therapeutic applications.
Electrophilically Activated Nitroalkanes in Synthesis of 3,4-Dihydroquinozalines
Nitroalkanes activated with polyphosphoric acid serve as efficient electrophiles in reactions with various nucleophilic amines. Strategically placed second functionality allows for the design of annulation reactions enabling preparation of various heterocycles. This strategy was employed to develop an innovative synthetic approach towards 3,4-dihydroquinazolines from readily available 2-(aminomethyl)anilines.
Electrophilically Activated Nitroalkanes in Double Annulation of 1,2,4Triazolo4,3-aquinolines and 1,3,4-Oxadiazole Rings
Nitroalkanes activated with polyphosphoric acid could serve as efficient electrophiles in reactions with amines and hydrazines, enabling various cascade transformations toward heterocyclic systems. This strategy was developed for an innovative synthetic protocol employing simultaneous or sequential annulation of two different heterocyclic cores, affording [1,2,4]triazolo[4,3-a]quinolines with 1,3,4-oxadiazole substituents.
Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity
IgA + B cells expressing programmed death ligand 1 (PD-L1) and interleukin 10 accumulate in the inflamed livers of humans and mice with non-alcoholic fatty liver disease where they promote the progression to hepatocellular carcinoma by limiting the local activation of PD-1-expressing CD8 + T cells. The role of adaptive immunity in early cancer development is controversial. Here we show that chronic inflammation and fibrosis in humans and mice with non-alcoholic fatty liver disease is accompanied by accumulation of liver-resident immunoglobulin-A-producing (IgA + ) cells. These cells also express programmed death ligand 1 (PD-L1) and interleukin-10, and directly suppress liver cytotoxic CD8 + T lymphocytes, which prevent emergence of hepatocellular carcinoma and express a limited repertoire of T-cell receptors against tumour-associated antigens. Whereas CD8 + T-cell ablation accelerates hepatocellular carcinoma, genetic or pharmacological interference with IgA + cell generation attenuates liver carcinogenesis and induces cytotoxic T-lymphocyte-mediated regression of established hepatocellular carcinoma. These findings establish the importance of inflammation-induced suppression of cytotoxic CD8 + T-lymphocyte activation as a tumour-promoting mechanism. Increased cancer risk in fatty livers Cancer progression beyond the early stages is thought to be caused in some cases by adaptive immunity, but its role remains controversial. In this study, Michael Karin and colleagues show that PD-L1-expressing IgA + B cells accumulate in the inflamed livers of humans and mice with non-alcoholic fatty liver disease. The inflammation-induced IgA + cells promote the progression to hepatocellular carcinoma by suppressing liver cytotoxic CD8 + T cells that prevent the emergence of this aggressive tumour.
Improved Method for Preparation of 3-(1H-Indol-3-yl)benzofuran-2(3H)-ones
3-(1H-Indol-3-yl)benzofuran-2(3H)-ones were efficiently accessed via polyphosphoric acid-mediated condensation of 3-(2-nitrovinyl)-1H-indoles with phenols.3-(1H-Indol-3-yl)benzofuran-2(3H)-ones were efficiently accessed via polyphosphoric acid-mediated condensation of 3-(2-nitrovinyl)-1H-indoles with phenols.
One-Pot Synthesis of Polynuclear Indole Derivatives by Friedel–Crafts Alkylation of γ-Hydroxybutyrolactams
The Friedel–Crafts reaction of novel 3,5-diarylsubstituted 5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones was used for low cost, one-pot preparation of polycyclic indole derivatives structurally similar to Ergot alkaloids.
An Effective Synthesis of Previously Unknown 7-Aryl Substituted Paullones
A straightforward three-step procedure affording a wide range of novel 7-aryl substituted paullone derivatives was developed. This scaffold is structurally similar to 2-(1H-indol-3-yl)acetamides—promising antitumor agents—hence, could be useful for the development of a new class of anticancer drugs.
Learning representations of microbe–metabolite interactions
Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks (https://github.com/biocore/mmvec) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe–metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease.