Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Al-Sarem, Mohammed"
Sort by:
Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
Emotions are an essential part of daily human communication. The emotional states and dynamics of the brain can be linked by electroencephalography (EEG) signals that can be used by the Brain–Computer Interface (BCI), to provide better human–machine interactions. Several studies have been conducted in the field of emotion recognition. However, one of the most important issues facing the emotion recognition process, using EEG signals, is the accuracy of recognition. This paper proposes a deep learning-based approach for emotion recognition through EEG signals, which includes data selection, feature extraction, feature selection and classification phases. This research serves the medical field, as the emotion recognition model helps diagnose psychological and behavioral disorders. The research contributes to improving the performance of the emotion recognition model to obtain more accurate results, which, in turn, aids in making the correct medical decisions. A standard pre-processed Database of Emotion Analysis using Physiological signaling (DEAP) was used in this work. The statistical features, wavelet features, and Hurst exponent were extracted from the dataset. The feature selection task was implemented through the Binary Gray Wolf Optimizer. At the classification stage, the stacked bi-directional Long Short-Term Memory (Bi-LSTM) Model was used to recognize human emotions. In this paper, emotions are classified into three main classes: arousal, valence and liking. The proposed approach achieved high accuracy compared to the methods used in past studies, with an average accuracy of 99.45%, 96.87% and 99.68% of valence, arousal, and liking, respectively, which is considered a high performance for the emotion recognition model.
Augmented Reality, Serious Games and Picture Exchange Communication System for People with ASD: Systematic Literature Review and Future Directions
For people with Autism Spectrum Disorder (ASD), using technological tools, such as augmented reality (AR) and serious games remain a new and unexplored option. To attract people with ASD who have communicative, social, emotional and attention deficit disorders to behavioral treatments, an attractive environment is needed that ensures continuity during treatment. The aim of the current work is to efficiently examine systematic reviews and relevant primary studies on ASD solutions from 2015 to 2020, particularly those using the traditional Picture Exchange Communication System (PECS), the application of augmented reality and those that propose serious games, thereby providing an overview of existing evidence and to identify strategies for future research. Five databases were searched for keywords that may be included within the broad Autism Spectrum Disorder ‘ASD’ umbrella term, alongside ‘augmented reality’, ‘serious games’ and ‘PECS’. We screened 1799 titles and abstracts, read, and retained 12 reviews and 43 studies. The studies scrutinized in our systematic review were examined to answer four primary and four sub-research questions, which we formulated to better understand general trends in the use of approaches for attracting people with ASD to behavioral therapies. Additionally, our systematic review also presents ongoing issues in this area of research and suggests promising future research directions. Our review is useful to researchers in this field as it facilitates the comparison of existing studies with work currently being conducted, based on the availability of a wide range of studies in three different areas (AR, SG and PECS).
Deep learning-based approach for 3D bone segmentation and prediction of missing tooth region for dental implant planning
Recent studies have shown that dental implants have high long-term survival rates, indicating their effectiveness compared to other treatments. However, there is still a concern regarding treatment failure. Deep learning methods, specifically U-Net models, have been effectively applied to analyze medical and dental images. This study aims to utilize U-Net models to segment bone in regions where teeth are missing in cone-beam computerized tomography (CBCT) scans and predict the positions of implants. The proposed models were applied to a CBCT dataset of Taibah University Dental Hospital (TUDH) patients between 2018 and 2023. They were evaluated using different performance metrics and validated by a domain expert. The experimental results demonstrated outstanding performance in terms of dice, precision, and recall for bone segmentation (0.93, 0.94, and 0.93, respectively) with a low volume error (0.01). The proposed models offer promising automated dental implant planning for dental implantologists.
An Aggregated Mutual Information Based Feature Selection with Machine Learning Methods for Enhancing IoT Botnet Attack Detection
Due to the wide availability and usage of connected devices in Internet of Things (IoT) networks, the number of attacks on these networks is continually increasing. A particularly serious and dangerous type of attack in the IoT environment is the botnet attack, where the attackers can control the IoT systems to generate enormous networks of “bot” devices for generating malicious activities. To detect this type of attack, several Intrusion Detection Systems (IDSs) have been proposed for IoT networks based on machine learning and deep learning methods. As the main characteristics of IoT systems include their limited battery power and processor capacity, maximizing the efficiency of intrusion detection systems for IoT networks is still a research challenge. It is important to provide efficient and effective methods that use lower computational time and have high detection rates. This paper proposes an aggregated mutual information-based feature selection approach with machine learning methods to enhance detection of IoT botnet attacks. In this study, the N-BaIoT benchmark dataset was used to detect botnet attack types using real traffic data gathered from nine commercial IoT devices. The dataset includes binary and multi-class classifications. The feature selection method incorporates Mutual Information (MI) technique, Principal Component Analysis (PCA) and ANOVA f-test at finely-granulated detection level to select the relevant features for improving the performance of IoT Botnet classifiers. In the classification step, several ensemble and individual classifiers were used, including Random Forest (RF), XGBoost (XGB), Gaussian Naïve Bayes (GNB), k-Nearest Neighbor (k-NN), Logistic Regression (LR) and Support Vector Machine (SVM). The experimental results showed the efficiency and effectiveness of the proposed approach, which outperformed other techniques using various evaluation metrics.
Concatenation of Pre-Trained Convolutional Neural Networks for Enhanced COVID-19 Screening Using Transfer Learning Technique
Coronavirus (COVID-19) is the most prevalent coronavirus infection with respiratory symptoms such as fever, cough, dyspnea, pneumonia, and weariness being typical in the early stages. On the other hand, COVID-19 has a direct impact on the circulatory and respiratory systems as it causes a failure to some human organs or severe respiratory distress in extreme circumstances. Early diagnosis of COVID-19 is extremely important for the medical community to limit its spread. For a large number of suspected cases, manual diagnostic methods based on the analysis of chest images are insufficient. Faced with this situation, artificial intelligence (AI) techniques have shown great potential in automatic diagnostic tasks. This paper aims at proposing a fast and precise medical diagnosis support system (MDSS) that can distinguish COVID-19 precisely in chest-X-ray images. This MDSS uses a concatenation technique that aims to combine pre-trained convolutional neural networks (CNN) depend on the transfer learning (TL) technique to build a highly accurate model. The models enable storage and application of knowledge learned from a pre-trained CNN to a new task, viz., COVID-19 case detection. For this purpose, we employed the concatenation method to aggregate the performances of numerous pre-trained models to confirm the reliability of the proposed method for identifying the patients with COVID-19 disease from X-ray images. The proposed system was trialed on a dataset that included four classes: normal, viral-pneumonia, tuberculosis, and COVID-19 cases. Various general evaluation methods were used to evaluate the effectiveness of the proposed model. The first proposed model achieved an accuracy rate of 99.80% while the second model reached an accuracy of 99.71%.
A Novel Hybrid Deep Learning Model for Detecting COVID-19-Related Rumors on Social Media Based on LSTM and Concatenated Parallel CNNs
Spreading rumors in social media is considered under cybercrimes that affect people, societies, and governments. For instance, some criminals create rumors and send them on the internet, then other people help them to spread it. Spreading rumors can be an example of cyber abuse, where rumors or lies about the victim are posted on the internet to send threatening messages or to share the victim’s personal information. During pandemics, a large amount of rumors spreads on social media very fast, which have dramatic effects on people’s health. Detecting these rumors manually by the authorities is very difficult in these open platforms. Therefore, several researchers conducted studies on utilizing intelligent methods for detecting such rumors. The detection methods can be classified mainly into machine learning-based and deep learning-based methods. The deep learning methods have comparative advantages against machine learning ones as they do not require preprocessing and feature engineering processes and their performance showed superior enhancements in many fields. Therefore, this paper aims to propose a Novel Hybrid Deep Learning Model for Detecting COVID-19-related Rumors on Social Media (LSTM–PCNN). The proposed model is based on a Long Short-Term Memory (LSTM) and Concatenated Parallel Convolutional Neural Networks (PCNN). The experiments were conducted on an ArCOV-19 dataset that included 3157 tweets; 1480 of them were rumors (46.87%) and 1677 tweets were non-rumors (53.12%). The findings of the proposed model showed a superior performance compared to other methods in terms of accuracy, recall, precision, and F-score.
Forecast-Driven Climate Control for Smart Greenhouses: Energy Optimization Using LSTM Model
Greenhouses play a vital role in modern agriculture by providing controlled environments for year-round crop production. However, climate regulation within these structures accounts for a significant portion of their energy consumption, often exceeding 50% of operational costs. Current greenhouse systems predominantly rely on reactive control strategies, leading to energy inefficiency and unstable internal conditions. Addressing this gap, the present study develops a machine learning-based framework that leverages time series forecasting models—specifically Long Short-Term Memory (LSTM)—that predict key climate parameters and generate optimal actuator control recommendations. The system utilizes multivariate environmental data to forecast temperature, humidity, and CO2 levels and minimize a composite energy proxy through proactive adjustments to heating, ventilation, and lighting systems. Experimental results demonstrate high prediction accuracy (R2 = 0.9835) and significant improvements in energy efficiency. By integrating predictive analytics with real-time sensor feedback, the proposed approach supports intelligent, energy-aware decision-making and advances the development of smart agriculture through proactive greenhouse climate management.
Phobia Exposure Therapy Using Virtual and Augmented Reality: A Systematic Review
A specific phobia is a common anxiety-related disorder that can be treated efficiently using different therapies including exposure therapy or cognitive therapy. One of the most famous methods to treat a specific phobia is exposure therapy. Exposure therapy involves exposing the target patient to the anxiety source or its context without the intention to cause any danger. One promising track of research lies in VR exposure therapy (VRET) and/or AR exposure therapy (ARET), where gradual exposure to a negative stimulus is used to reduce anxiety. In order to review existing works in this field, a systematic search was completed using the following databases: PubMed, ProQuest, Scopus, Web of Science, and Google Scholar. All studies that present VRET and/or ARET solutions were selected. By reviewing the article, each author then applied the inclusion and exclusion criteria, and 18 articles were selected. This systematic review aims to investigate the previous studies that used either VR and/or AR to treat any type of specific phobia in the last five years. The results demonstrated a positive outcome of virtual reality exposure treatment in the treatment of most phobias. In contrast, some of these treatments did not work for a few specific phobias in which the standard procedures were more effective. Besides, the study will also discuss the best of both technologies to treat a specific phobia. Furthermore, this review will present the limitations and future enhancements in this field.
An Improved Sentiment Classification Approach for Measuring User Satisfaction toward Governmental Services’ Mobile Apps Using Machine Learning Methods with Feature Engineering and SMOTE Technique
Analyzing the sentiment of Arabic texts is still a big research challenge due to the special characteristics and complexity of the Arabic language. Few studies have been conducted on Arabic sentiment analysis (ASA) compared to English or other Latin languages. In addition, most of the existing studies on ASA analyzed datasets collected from Twitter. However, little attention was given to the huge amounts of reviews for governmental or commercial mobile applications on Google Play or the App Store. For instance, the government of Saudi Arabia developed several mobile applications in healthcare, education, and other sectors as a response to the COVID-19 pandemic. To address this gap, this paper aims to analyze the users’ opinions of six applications in the healthcare sector. An improved sentiment classification approach was proposed for measuring user satisfaction toward governmental services’ mobile apps using machine learning models with different preprocessing methods. The Arb-AppsReview dataset was collected from the reviews of these six mobile applications available on Google Play and the App Store, which includes 51k reviews. Then, several feature engineering approaches were applied, which include Bing Liu lexicon, AFINN, and MPQA Subjectivity Lexicon, bag of words (BoW), term frequency-inverse document frequency (TF-IDF), and the Google pre-trained Word2Vec. Additionally, the SMOTE technique was applied as a balancing technique on this dataset. Then, five ML models were applied to classify the sentiment opinions. The experimental results showed that the highest accuracy score (94.38%) was obtained by applying a support vector machine (SVM) using the SMOTE technique with all concatenated features.
Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal
In the modern world, wearable smart devices are continuously used to monitor people’s health. This study aims to develop an automatic mental stress detection system for researchers based on Electrocardiogram (ECG) signals from smart T-shirts using machine learning classifiers. We used 20 subjects, including 10 from mental stress (after twelve hours of continuous work in the laboratory) and 10 from normal (after completing the sleep or without any work). We also applied three scoring techniques: Chalder Fatigue Scale (CFS), Specific Fatigue Scale (SFS), Depression, Anxiety, and Stress Scale (DASS), to confirm the mental stress. The total duration of ECG recording was 1800 min, including 1200 min during mental stress and 600 min during normal. We calculated two types of features, such as demographic and extracted by ECG signal. In addition, we used Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), and Logistic Regression (LR) to classify the intra-subject (mental stress and normal) and inter-subject classification. The DT leave-one-out model has better performance in terms of recall (93.30%), specificity (96.70%), precision (94.40%), accuracy (93.30%), and F1 (93.50%) in the intra-subject classification. Additionally, The classification accuracy of the system in classifying inter-subjects is 94.10% when using a DT classifier. However, our findings suggest that the wearable smart T-shirt based on the DT classifier may be used in big data applications and health monitoring. Mental stress can lead to mitochondrial dysfunction, oxidative stress, blood pressure, cardiovascular disease, and various health problems. Therefore, real-time ECG signals help assess cardiovascular and related risk factors in the initial stage based on machine learning techniques.