Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
155 result(s) for "Al-Sehemi, Abdullah G."
Sort by:
Development of Different Kinds of Electrocatalyst for the Electrochemical Reduction of Carbon Dioxide Reactions: An Overview
Significant advancements have been made in the development of CO2 reduction processes for applications such as electrosynthesis, energy storage, and environmental remediation. Several materials have demonstrated great potential in achieving high activity and selectivity for the desired reduction products. Nevertheless, these advancements have primarily been limited to small-scale laboratory settings, and the considerable technical obstacles associated with large-scale CO2 reduction have not received sufficient attention. Many of the researchers have been faced with persistent challenges in the catalytic process, primarily stemming from the low Faraday efficiency, high overpotential, and low limiting current density observed in the production of the desired target product. The highlighted materials possess the capability to transform CO2 into various oxygenates, including ethanol, methanol, and formates, as well as hydrocarbons such as methane and ethane. A comprehensive summary of the recent research progress on these discussed types of electrocatalysts is provided, highlighting the detailed examination of their electrocatalytic activity enhancement strategies. This serves as a valuable reference for the development of highly efficient electrocatalysts with different orientations. This review encompasses the latest developments in catalyst materials and cell designs, presenting the leading materials utilized for the conversion of CO2 into various valuable products. Corresponding designs of cells and reactors are also included to provide a comprehensive overview of the advancements in this field.
MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices
Sensing devices are key nodes for information detection, processing, and conversion and are widely applied in different fields such as industrial production, environmental monitoring, and defense. However, increasing demand of these devices has complicated the application scenarios and diversified the detection targets thereby promoting the continuous development of sensing materials and detection methods. In recent years, Ti n+1 C n T x ( n  = 1, 2, 3) MXenes with outstanding optical, electrical, thermal, and mechanical properties have been developed as ideal candidates of sensing materials to apply in physical, chemical, and biological sensing fields. In this review, depending on optical and electrical sensing signals, we systematically summarize the application of Ti n+1 C n T x in nine categories of sensors such as strain, gas, and fluorescence sensors. The excellent sensing properties of Ti n+1 C n T x allow its further development in emerging intelligent and bionic devices, including smart flexible devices, bionic E-skin, neural network coding and learning, bionic soft robot, as well as intelligent artificial eardrum, which are all discussed briefly in this review. Finally, we present a positive outlook on the potential future challenges and perspectives of MXene-based sensors. MXenes have shown a vigorous development momentum in sensing applications and can drive the development of an increasing number of new technologies.
CeSe nanocube anchored on the nanosheet of reduced graphene oxide (rGO) as a binder free electrode for energy conversion system
There is a persistent imbalance between energy demand and supply since renewable energy sources are intermittent. A potential answer to this ongoing problem is the development of suitable materials that could be utilized in storage energy devices. Among all the devices, supercapacitors with efficient electrode material are one of the possible storage technologies. Here in the present work, a cerium selenide/reduced graphene oxide (CeSe/rGO) heterostructure-based electrode is fabricated via hydrothermal technique. The synthesized CeSe/rGO performs well with 810.45 F g −1 specific capacitance at 1.5 A g −1 , and an exceptional rate of capability with negligible instability up to 5000th cycles. Additionally, the probable contribution of rGO to the composite's ability to increase supercapacitance through synergy effect of CeSe and rGO has been observed. EIS (Electrochemical impedance spectroscopy) was exploited to find out the mechanism of charge transmission for the fabricated material. The electrochemical analysis indicates that CeSe/rGO exhibited the superior performance than the apparently cutting-edge structures.
Investigation of the Effect of Substituents on Electronic and Charge Transport Properties of Benzothiazole Derivatives
A series of new benzothiazole-derived donor–acceptor-based compounds (Comp1–4) were synthesized and characterized with the objective of tuning their multifunctional properties, i.e., charge transport, electronic, and optical. All the proposed structural formulations (Comp1–4) were commensurate using FTIR, 1H NMR, 13C NMR, ESI-mass, UV–vis, and elemental analysis techniques. The effects of the electron-donating group (-CH3) and electron-withdrawing group (-NO2) on the optoelectronic and charge transfer properties were studied. The substituent effect on absorption was calculated at the TD-B3LYP/6-31+G** level in the gas and solvent phases. The effect of solvent polarity on the absorption spectra using various polar and nonpolar solvents, i.e., ethanol, acetone, DMF, and DMSO was investigated. Light was shed on the charge transport in benzothiazole compounds by calculating electron affinity, ionization potential, and reorganization energies. Furthermore, the synthesized compounds were used to prepare thin films on the FTO substrate to evaluate the charge carrier mobility and other related device parameters with the help of I-V characteristic measurements.
Exploring novel fluorine-rich fuberidazole derivatives as hypoxic cancer inhibitors: Design, synthesis, pharmacokinetics, molecular docking, and DFT evaluations
Sixteen fuberidazole derivatives as potential new anticancer bioreductive prodrugs were prepared and characterized. The in vitro anticancer potential was examined to explore their cytotoxic properties by employing apoptosis, DNA damage, and proliferation tests on chosen hypoxic cancer cells. Eight substances (Compound 5a, 5c, 5d, 5e, 5g, 5h, 5i, and 5m ) showed promising cytotoxicity values compared to the standard control. The potential of compounds was also examined through in silico studies (against human serum albumin ), including chem-informatics, to understand the structure-activity relationship (SAR), pharmacochemical strength, and the mode of interactions responsible for their action. The DFT calculations revealed that only the 5b compound showed the lowest ΔET (2.29 eV) while 5 i showed relatively highest βtot (69.89 x 10–31 esu), highest αave (3.18 x 10–23 esu), and dipole moment (6.49 Debye). This study presents a novel class of fuberidazole derivatives with selectivity toward hypoxic cancer cells.
CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants
Since the end of 2019, a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has deprived numerous lives worldwide, called COVID-19. Up to date, omicron is the latest variant of concern, and BA.5 is replacing the BA.2 variant to become the main subtype rampaging worldwide. These subtypes harbor an L452R mutation, which increases their transmissibility among vaccinated people. Current methods for identifying SARS-CoV-2 variants are mainly based on polymerase chain reaction (PCR) followed by gene sequencing, making time-consuming processes and expensive instrumentation indispensable. In this study, we developed a rapid and ultrasensitive electrochemical biosensor to achieve the goals of high sensitivity, the ability of distinguishing the variants, and the direct detection of RNAs from viruses simultaneously. We used electrodes made of MXene-AuNP (gold nanoparticle) composites for improved sensitivity and the CRISPR/Cas13a system for high specificity in detecting the single-base L452R mutation in RNAs and clinical samples. Our biosensor will be an excellent supplement to the RT-qPCR method enabling the early diagnosis and quick distinguishment of SARS-CoV-2 Omicron BA.5 and BA.2 variants and more potential variants that might arise in the future.
CRISPR-Cas12a-Empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of SARS-CoV-2 Delta Variant
HighlightsA robust technique-methodology of electrochemical CRISPR sensing is first proposed for the rapid, highly sensitive and specific detection of SARS-CoV-2 variant without any nucleic-acid-amplification assays.Using the DNA template identical to SARS-CoV-2 Delta spike gene sequence as model, our biosensor exhibited excellent analytical detection limit (50 fM) and high linearity (R2 = 0.987) without any amplification assay.Specific crRNA was designed to match the mutation site on nucleic acid sequence of the SARS-CoV-2 Delta variant, presenting programmability, universality, and scalability for diagnosis of other emerging SARS-CoV-2 variants.Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now, which is time-consuming and requires expensive instrumentation, and the confirmation of variants relies on further sequencing techniques. Herein, we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid, highly sensitivity and specificity for the detection of SARS-CoV-2 variant. To enhance the sensing capability, gold electrodes are uniformly decorated with electro-deposited gold nanoparticles. Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model, our biosensor exhibits excellent analytical detection limit (50 fM) and high linearity (R2 = 0.987) over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays. The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system. Furthermore, based on the wireless micro-electrochemical platform, the proposed biosensor reveals promising application ability in point-of-care testing.
Nano round polycrystalline adsorbent of chicken bones origin for Congo red dye adsorption
Nano round polycrystalline adsorbent (NRPA) of chicken bones origin was utilize as effective adsorbent in Congo red dye removal via aqueous media. The NRPA adsorbent was prepared via thermal decomposition and its structure was investigated with the aids of Transmission Electron Microscopy, Fourier Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy, Energy Dispersive X-ray Analysis (EDX), and X-ray Diffractometer (XRD). A monophasic apatite phase was confirmed from XRD investigation, while functional groups analysis showed that NRPA possessed CO 3 2− , PO 4 3− and OH − absorption bands. The maximum adsorption capacities derived from Langmuir isotherm is 98.216 mg g −1 . From the combined values of n from Freundlich and separation factor (R L ) of Langmuir models, the adsorption of CR by NRPA is favourable. Thermodynamic values of 5.280 kJ mol −1 and 16.403 kJ mol −1  K −1 were found for ΔH° and ΔS° respectively. The entire values of ΔG° which ranges from − 35.248 to − 459.68 kJ mol −1 were all negative at different temperatures. Thus, nano polycrystalline adsorbent of chicken bone origin can serve as excellent adsorbent in Congo red dye removal from waste water.
Bioactivity properties of hydroxyapatite/clay nanocomposites
The need for bioactive and non-toxic biomaterials is on a high demand in tissue engineering applications nowadays. Hydroxyapatite (HAp) is the chief constituent of teeth and bones in mammas. One of the major challenges with the use of HAp in engineering application is its brittleness and to overcome this, it’s important to react it with a material that can enhanced it’s fragility. To this end, HAp and HAp/clay nanocomposites were developed via wet chemical process to mimic natural HAp and to equally confer special properties such as mechanical properties, high surface area, crystallinity, high porosity, and biocompatibility on the biomaterial. The functional groups properties of the as-prepared nanocomposites analyzed by FT-IR showed that the HAp and clay posed reactive centers such as Al–Al–OH, Si–Si–OH, Si–O, PO 4 3− , –OH, and Si–O–Al. The XRD results confirmed the formation of HAp/clay nanocomposite, while SEM and TEM images showed the morphologies of the prepared nanocomposites to be round shape particles. Besides, EDX result revealed the Ca/P ratio of HAp and HAp-C to be lower than that of stoichiometric ratio (1.67) which implies the presence of K, Na, Ca, Mg, Si and Al in the HAp/clay nanocomposite. The mechanical properties of the apatite were greatly enhanced by the addition of clay. The physiological behaviour of the fabricated apatite composites in saline solution showed steady increase in the values of the saline pH of the various biomolecules until day 5 and became fairly constant at day 7 with pH range of 7.30–7.38. Though the saline solution was acidic at the beginning due to dissolved carbon dioxide, the pH of the saline solution containing the nanocomposites gradually became neutral and fairly alkaline over time as a result of the presence of Lewis basis structures in the composites which helps in neutralizing the acidic solution. Furthermore, proliferation of apatites particles onto the surface of the nanocomposites was observed after treatment with simulated body fluids (SBF) media for 7 days. Thus, HAp/clay nanocomposites can be useful biomaterials in bone tissue engineering.
Tuning the Electronic and Charge Transport Properties of Schiff Base Compounds by Electron Donor and/or Acceptor Groups
Organic semiconductors have gained substantial interest as active materials in electronic devices due to their advantages over conventional semiconductors. We first designed four Schiff base compounds, then the effect of electron donor/acceptor groups (methyl/nitro) was studied on the compounds’ electronic and transport nature. The absorption spectra (λabs) were computed by time-dependent DFT at TD-B3LYP/6-31+G** level. The effect of different solvents (ethanol, DMF, DMSO, and acetone) was investigated on the λabs. The substitution of the -NO2 group to the furan moiety at the 5th position in Compound 3 leads to a red-shift in the absorption spectrum. A smaller hole reorganization energy value in Compound 3 would be beneficial to get the hole’s intrinsic mobility. In contrast, a reduced-electron reorganization energy value of Compound 4 than hole may result in enhanced electron charge transfer capabilities. The reorganization energies of compounds 1 and 2 exposed balanced hole/electron transport probability. The optical, electronic, and charge transport properties at the molecular level indicate that Compound 3 is suitable for organic electronic device applications.