Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
142 result(s) for "Alagawany, Mahmoud"
Sort by:
Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health - a comprehensive review
Nutraceuticals have gained immense importance in poultry science recently considering the nutritional and beneficial health effects of their constituents. Besides providing nutritional requirements to birds, nutraceuticals have beneficial pharmacological effects, for example, they help in establishing normal physiological health status, prevent diseases and thereby improve production performance. Nutraceuticals include amino acids, vitamins, minerals, enzymes, etc. which are important for preventing oxidative stress, regulating the immune response and maintaining normal physiological, biochemical and homeostatic mechanisms. Nutraceuticals help in supplying nutrients in balanced amounts for supporting the optimal growth performance in modern poultry flocks, and as a dietary supplement can reduce the use of antibiotics. The application of antibiotic growth enhancers in poultry leads to the propagation of antibiotic-resistant microbes and drug residues; therefore, they have been restricted in many countries. Thus, there is a demand for natural feed additives that lead to the same growth enhancement without affecting the health. Nutraceuticals substances have an essential role in the development of the animals' normal physiological functions and in protecting them against infectious diseases. In this review, the uses of amino acids, vitamins and minerals as well as their mode of action in growth promotion and elevation of immune system are discussed.
The Role of Zinc Microelement in Aquaculture: a Review
Trace elements are required in optimum regimes for improving the productivity and wellbeing of aquatic animals. Zinc is one of the main microelements involved in several functions in the animal’s body. Zinc potentiates the metabolism function, synthesis of essential enzymes, and the formation of hormones associated with growth, reproduction, immunity, and antioxidative roles in aquatic animals. Several sources of zinc are regularly applied in aquaculture, including inorganic, organic, and nanoparticles. Many studies examined the effects of zinc supplementation in the diets of aquatic animals. The results indicated that zinc could be included in aquafeed in a dose-dependent manner. The effects of zinc depend on the dose, source, duration of feeding, animals’ sizes, and experimental conditions. This article comprehensively discusses the results of relevant studies that investigated the effects of zinc on the performances of aquatic animals. The review also intended to update the academia with the previous and current status of using zinc in aquafeed. Furthermore, the article includes up-to-date outputs of relevant studies of using different zinc sources in aquafeed.
Antioxidant effects of seaweeds and their active compounds on animal health and production - a review
Natural antioxidants applied as feed additives can improve not only animals' health and overall performance but also increase their resistance to environmental stress such as heat stress, bad housing conditions, diseases, etc. Marine organisms, for example seaweeds - red, brown, and green macroalgae contain a plethora of biologically active substances, including phenolic compounds, polysaccharides, pigments, vitamins, micro- and macroelements, and proteins known for their antioxidant activity, which can help in the maintenance of appropriate redox status in animals and show pleiotropic effects for enhancing good health, and productivity. The dysregulated production of free radicals is a marked characteristic of several clinical conditions, and antioxidant machinery plays a pivotal role in scavenging the excessive free radicals, thereby preventing and treating infections in animals. Supplementation of seaweeds to animal diet can boost antioxidant activity, immunity, and the gut environment. Dietary supplementation of seaweeds can also enhance meat quality due to the deposition of marine-derived antioxidant components in muscles. The use of natural antioxidants in the meat industry is a practical approach to minimize or prevent lipid oxidation. However, overconsumption of seaweeds, especially brown macroalgae, should be avoided because of their high iodine content. An important point to consider when including seaweeds in animal feed is their variable composition which depends on the species, habitat, location, harvest time, growing conditions such as nutrient concentration in water, light intensity, temperature, etc. This review highlights the beneficial applications of seaweeds and their extracted compounds, which have antioxidant properties as feed additives and impact animal health and production.
The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition
Antibiotics as growth promoters in poultry have been used for long time for improving feed efficiency and performance. Due to their various side-effects such as antibiotic resistance, destruction of beneficial bacteria in the gut, and dysbiosis, it is required to think about some alternatives. Probiotics are one of the options in this regard for improving poultry production. Probiotics are defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host.” They are available in various forms for use as feed additives. Probiotics as feed additives aid in proper digestion of feed hence make the nutrients available for faster growth. Immunity can also be improved by addition of probiotics to poultry diets. Moreover, probiotics aid in improving meat and egg quality traits. Various infectious diseases of poultry can be countered by use of probiotics in their feed. A proper selection of probiotic strains is required for gaining optimal effects. This review focuses on the mechanisms of action of probiotics and their importance in poultry feed supplementation for enhancing production and safeguarding health of poultry.
Potential of Spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation
Increase in drug resistance as well as ineffective immunization efforts against various pathogens (viruses, bacteria and fungi) pose a significant threat to the poultry industry. Spirulina is one of the most widely used natural ingredients which is becoming popular as a nutritional supplement in humans, animals, poultry and aquaculture. It contains protein, vitamins, minerals, fatty acids, pigments, and essential amino acids. Moreover, it also has considerable quantities of unique natural antioxidants including polyphenols, carotenoids, and phycocyanin. Dietary supplementation of Spirulina can beneficially affect gut microbial population, serum biochemical parameters, and growth performance of chicken. Additionally, it contains polyphenolic contents having antibacterial effects. Spirulina extracts might inhibit bacterial motility, invasion, biofilm formation, and quorum sensing in addition to acting directly on the bacterium by weakening and making the bacterial cell walls more porous, subsequently resulting in cytoplasmic content leakage. Additionally, Spirulina has shown antiviral activities against certain common human or animal viruses and this capability can be considered to exhibit potential benefits against avian viruses also. Spirulan, a calcium-rich internal polysaccharide of Spirulina, is potentially responsible for its antiviral effect through inhibiting the entry of several viruses into the host cells, boosting the production of nitric oxide in macrophages, and stimulating the generation of cytokines. Comparatively a greater emphasis has been given to the immune modulatory effects of Spirulina as a feed additive in chicken which might boost disease resistance and improve survival and growth rates, particularly under stress conditions. This manuscript reviews biological activities and immune-stimulating properties of Spirulina and its potential use as a dietary supplement in poultry to enhance growth, gut health and disease resistance.
Rosmarinic acid: modes of action, medicinal values and health benefits
The supplementation of livestock rations with herbs containing bioactive components, such as rosmarinic acid (RA), have shown promising results as a natural feed additive in promoting growth, productive and reproductive performance, feed utilization, fertility, anti-oxidant status and immunologic indices. Furthermore, RA reportedly reduces the risks of various animal diseases and mitigates side effects of chemical and synthetic drugs. RA is a natural polyphenol present in several Lamiaceae herbs like Perilla frutescens, and RA is becoming an integral component of animal nutrition as it counters the effect of reactive oxygen species induced in the body as a consequence of different kinds of stressors. Studies have further ascertained the capability of RA to work as an anti-microbial, immunomodulatory, anti-diabetic, anti-allergic, anti-inflammatory, hepato- and renal-protectant agent, as well as to have beneficial effects during skin afflictions. Additionally, RA is favored in meat industries due to enhancing the quality of meat products by reportedly improving shelf-life and imparting desirable flavor. This review describes the beneficial applications and recent findings with RA, including its natural sources, modes of action and various useful applications in safeguarding livestock health as well as important aspects of human health.
Effect of Dietary Supplementation of Biological Curcumin Nanoparticles on Growth and Carcass Traits, Antioxidant Status, Immunity and Caecal Microbiota of Japanese Quails
This study was planned to evaluate the impact of different nano-curcumin levels on the growth rate, carcass, blood chemistry and caecal microbes of growing quail. A total of 270 Japanese quails at one-week-old were distributed to six equal groups; each group consisted of 45 unsexed birds with five replications (nine quails each). The 1st group was fed a basal diet, whereas the 2nd, 3rd, 4th, 5th and 6th groups were fed diets containing nano-curcumin (0.1, 0.2, 0.3, 0.4 and 0.5 g/kg diet, respectively). Nano-curcumin levels significantly increased (p ≤ 0.0001) body weight at 3 weeks and 5 weeks of age. Body weight gain during 1–3, 3–5 and 1–5 weeks of age was significantly increased (p < 0.0001) in groups treated with nano-curcumin levels (except at 0.3 g/kg; 1–3 weeks) compared to control. During 1 to 5 weeks, feed intake was decreased (p < 0.0001) in birds receiving nano-curcumin (0.1, 0.3 and 0.4 g/kg) diets. The best values of feed conversion ratio were recorded for the 0.4 g nano-curcumin-treated group. Carcass traits were not affected Nano-curcumin levels. The inclusion of nano-curcumin (0.2, 0.3 or 0.5 g/kg) significantly increased serum TP (p = 0.0004), albumin (p = 0.0078) and globulin (p < 0.0001). Quails fed with nano-curcumin (0.2 g/kg) exhibited the highest SOD and GSH activities, serum IgG and IgM concentrations and complement values compared to control. The addition of any level of nano-curcumin in the quail diet also significantly improved the lipid profile. In conclusion, supplemental nano-curcumin had beneficial impacts on growth, lipid profile, blood constituents, antioxidant indices, and immunity of growing quail, as well as increasing counts of lactic acid bacteria and reducing pathogenic bacteria.
Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture
Using synthetic antibiotics/chemicals for infectious bacterial pathogens and parasitic disease control causes beneficial microbial killing, produces multi-drug resistant pathogens, and residual antibiotic impacts in humans are the major threats to aquaculture sustainability. Applications of herbal products to combat microbial and parasitic diseases are considered as alternative approaches for sustainable aquaculture. Essential oils (EOs) are the secondary metabolites of medicinal plants that possess bioactive compounds like terpens, terpenoids, phenylpropenes, and isothiocyanates with synergistic relationship among these compounds. The hydrophobic compounds of EOs can penetrate the bacterial and parasitic cells and cause cell deformities and organelles dysfunctions. Dietary supplementation of EOs also modulate growth, immunity, and infectious disease resistance in aquatic organisms. Published research reports also demonstrated EOs effectiveness against Ichthyophthirius multifiliis, Gyrodactylus sp., Euclinostomum heterostomum, and other parasites both in vivo and in vitro. Moreover, different infectious fish pathogenic bacteria like Aeromonas salmonicida, Vibrio harveyi, and Streptococcus agalactiae destruction was confirmed by plant originated EOs. However, no research was conducted to confirm the mechanism of action or pathway identification of EOs to combat aquatic parasites and disease-causing microbes. This review aims to explore the effectiveness of EOs against fish parasites and pathogenic bacteria as an environment-friendly phytotherapeutic in the aquaculture industry. Moreover, research gaps and future approaches to use EOs for sustainable aquaculture practice are also postulated.
Spirulina (Arthrospira platensis) Used as Functional Feed Supplement or Alternative Protein Source: A Review of the Effects of Different Dietary Inclusion Levels on Production Performance, Health Status, and Meat Quality of Broiler Chickens
The broiler industry is pivotal in meeting the growing global demand for highly nutritious animal protein foods. Hence, there is a continuous interest in identifying novel, alternative, and even unconventional feed resources that could help sustainably support chicken meat production and quality. In this view, the microalga Spirulina (Arthrospira, formerly Spirulina, platensis), due to its unique chemical composition and some ecological advantages offered by its cultivation over traditional agriculture, has attracted great attention in the poultry sector for potential application in broiler diets, either as a functional supplement or a replacer of conventional protein sources such as soybean meal. The studies conducted so far seem to have confirmed many of the initial expectations regarding the advantages that may derive from dietary Spirulina supplementation, documenting its capacity to positively influence the intestinal and general health status of broiler chickens, leading to improved or preserved productive performance (under normal or challenging conditions, respectively), as well as to increased disease resistance and survivability. Furthermore, dietary Spirulina supplementation has been shown to induce positive changes in some important traits of broiler meat quality. However, at present, the inclusion of Spirulina in broiler diet, especially but not solely in relation to the use as an alternative protein source, presents several technical and economic limitations. To increase the overall awareness around the actual usefulness and practical usability of Spirulina as a novel natural component of the broiler diet, this review paper seeks to provide a comprehensive and integrated presentation of what is currently known about this topic, highlighting critical issues that are still pending and would require further research efforts.
Selenium Nanoparticles as a Natural Antioxidant and Metabolic Regulator in Aquaculture: A Review
Balanced aquafeed is the key factor for enhancing the productivity of aquatic animals. In this context, aquatic animals require optimal amounts of lipids, proteins, carbohydrates, vitamins, and minerals. The original plant and animals’ ingredients in the basal diets are insufficient to provide aquafeed with suitable amounts of minerals. Concurrently, elements should be incorporated in aquafeed in optimal doses, which differ based on the basal diets’ species, age, size, and composition. Selenium is one of the essential trace elements involved in various metabolic, biological, and physiological functions. Se acts as a precursor for antioxidative enzyme synthesis leading to high total antioxidative capacity. Further, Se can enhance the immune response and the tolerance of aquatic animals to infectious diseases. Several metabolic mechanisms, such as thyroid hormone production, cytokine formation, fecundity, and DNA synthesis, require sufficient Se addition. The recent progress in the nanotechnology industry is also applied in the production of Se nanoparticles. Indeed, Se nanoparticles are elaborated as more soluble and bioavailable than the organic and non-organic forms. In aquaculture, multiple investigations have elaborated the role of Se nanoparticles on the performances and wellbeing of aquatic animals. In this review, the outputs of recent studies associated with the role of Se nanoparticles on aquatic animals’ performances were simplified and presented for more research and development.