Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Alastrué, Javier"
Sort by:
Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE
by
Kochendorfer, John
,
Mekis, Eva
,
Alastrué, Javier
in
Air temperature
,
Automation
,
Chemical precipitation
2017
Although precipitation has been measured for many centuries, precipitation measurements are still beset with significant inaccuracies. Solid precipitation is particularly difficult to measure accurately, and wintertime precipitation measurement biases between different observing networks or different regions can exceed 100 %. Using precipitation gauge results from the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), errors in precipitation measurement caused by gauge uncertainty, spatial variability in precipitation, hydrometeor type, crystal habit, and wind were quantified. The methods used to calculate gauge catch efficiency and correct known biases are described. Adjustments, in the form of transfer functions that describe catch efficiency as a function of air temperature and wind speed, were derived using measurements from eight separate WMO-SPICE sites for both unshielded and single-Alter-shielded precipitation-weighing gauges. For the unshielded gauges, the average undercatch for all eight sites was 0.50 mm h−1 (34 %), and for the single-Alter-shielded gauges it was 0.35 mm h−1 (24 %). After adjustment, the mean bias for both the unshielded and single-Alter measurements was within 0.03 mm h−1 (2 %) of zero. The use of multiple sites to derive such adjustments makes these results unique and more broadly applicable to other sites with various climatic conditions. In addition, errors associated with the use of a single transfer function to correct gauge undercatch at multiple sites were estimated.
Journal Article
The potential for uncertainty in Numerical Weather Prediction model verification when using solid precipitation observations
by
Ross, Amber
,
Kochendorfer, John
,
Collado, José Luís
in
Atmospheric sciences
,
Automation
,
Bias
2020
Precipitation forecasts made by Numerical Weather Prediction (NWP) models are typically verified using precipitation gauge observations that are often prone to the wind‐induced undercatch of solid precipitation. Therefore, apparent model biases in solid precipitation forecasts may be due in part to the measurements and not the model. To reduce solid precipitation measurement biases, adjustments in the form of transfer functions were derived within the framework of the World Meteorological Organization Solid Precipitation Inter‐Comparison Experiment (WMO‐SPICE). These transfer functions were applied to single‐Alter shielded gauge measurements at selected SPICE sites during two winter seasons (2015–2016 and 2016–2017). Along with measurements from the WMO automated field reference configuration at each of these SPICE sites, the adjusted and unadjusted gauge observations were used to analyze the bias in a Global NWP model precipitation forecast. The verification of NWP winter precipitation using operational gauges may be subject to verification uncertainty, the magnitude and sign of which varies with the gauge‐shield configuration and the relation between model and site‐specific local climatologies. The application of a transfer function to alter‐shielded gauge measurements increases the amount of solid precipitation reported by the gauge and therefore reduces the NWP precipitation bias at sites where the model tends to overestimate precipitation, and increases the bias at sites where the model underestimates the precipitation. This complicates model verification when only operational (non‐reference) gauge observations are available. Modelers, forecasters, and climatologists must consider this when comparing modeled and observed precipitation. The verification of NWP winter precipitation using operational gauge is affected by wind‐induced undercatch. In the absence of a reference (DFAR), the application of a transfer function to (SA) gauge measurements partially corrects the undercatch, but introduces an additional source of uncertainty on verification results. The adjustment increases the amount of observed solid precipitation, and therefore reduces the NWP bias at sites where the model tends to overestimate precipitation, and increases the bias at sites where the model tends to underestimate precipitation. The issue is illustrated at SPICE sites in various climate regimes, which have the highest quality solid precipitation measurements that are available.
Journal Article
Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network
2017
Within the framework of the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), the Thies tipping bucket precipitation gauge was assessed against the SPICE reference configuration at the Formigal–Sarrios test site located in the Pyrenees mountain range of Spain. The Thies gauge is the most widely used precipitation gauge by the Spanish Meteorological State Agency (AEMET) for the measurement of all precipitation types including snow. It is therefore critical that its performance is characterized. The first objective of this study is to derive transfer functions based on the relationships between catch ratio and wind speed and temperature. Multiple linear regression was applied to 1 and 3 h accumulation periods, confirming that wind is the most dominant environmental variable affecting the gauge catch efficiency, especially during snowfall events. At wind speeds of 1.5 m s−1 the tipping bucket recorded only 70 % of the reference precipitation. At 3 m s−1, the amount of measured precipitation decreased to 50 % of the reference, was even lower for temperatures colder than −2 °C and decreased to 20 % or less for higher wind speeds.The implications of precipitation underestimation for areas in northern Spain are discussed within the context of the present analysis, by applying the transfer function developed at the Formigal–Sarrios and using results from previous studies.
Journal Article
FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury
Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. We have previously shown that individual therapeutic strategies, transplantation of ependymal stem/progenitor cells of the spinal cord after injury (epSPCi) or FM19G11 pharmacological treatment, induce moderate functional recovery after SCI. Here, the combination of treatments has been assayed for functional and histological analysis. Immediately after severe SCI, one million epSPCi were intramedullary injected, and the FM19G11 compound or dimethyl sulfoxide (DMSO) (as the vehicle control) was administrated via intrathecal catheterization. The combination of treatments, epSPCi and FM19G11, improves locomotor tasks compared to the control group, but did not significantly improve the Basso, Beattie, Bresnahan (BBB) scores for locomotor analysis in comparison with the individual treatments. However, the histological analysis of the spinal cord tissues, two months after SCI and treatments, demonstrated that when we treat the animals with both epSPCi and FM19G11, an improved environment for neuronal preservation was generated by reduction of the glial scar extension. The combinatorial treatment also contributes to enhancing the oligodendrocyte precursor cells by inducing the expression of Olig1 in vivo. These results suggest that a combination of therapies may be an exciting new therapeutic treatment for more efficient neuronal activity recovery after severe SCI.
Journal Article
Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells
by
Rodriguez-Jimenez, Francisco Javier
,
Stojkovic, Miodrag
,
Moreno-Manzano, Victoria
in
adults
,
animal injuries
,
Animals
2016
Ion channels included in the family of Connexins (Cx) have been reported to influence the secondary expansion of traumatic spinal cord injury (SCI) and neuropathic pain following SCI. However, Cxs also contribute to spinal cord neurogenesis during the remyelinating process and functional recovery after SCI. Certain Cxs have been recently related to the control of cell proliferation and the differentiation of neuronal progenitors. Adult spinal-cord-derived ependymal stem progenitor cells (epSPC) show high expression levels of Cx50 in non-pathological conditions and lower expression when they actively proliferate after injury (epSPCi). We explore the role of Cx50 in the ependymal population in the modulation of Sox2, a crucial factor of neural progenitor self-renewal and a promising target for promoting neuronal-cell-fate induction for neuronal tissue repair. Short-interfering-RNA ablation or over-expression of Cx50 regulates the expression of Sox2 in both epSPC and epSPCi. Interestingly, Cx50 and Sox2 co-localize at the nucleus indicating a potential role for this ion channel beyond cell-to-cell communication in the spinal cord. In vivo and in vitro experiments with Clotrimazole, a specific pharmacological modulator of Cx50, show the convergent higher expression of Cx50 and Sox2 in the isolated epSPC/epSPCi and in spinal cord tissue. Therefore, the pharmacological modulation of Cx50 might constitute an interesting mechanism for Sox2 induction to modulate the endogenous regenerative potential of neuronal tissue with a potential application in regenerative therapies.
Journal Article
Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation
by
Rodriguez-Jimenez, Francisco
,
Alastrue-Agudo, Ana
,
Stojkovic, Miodrag
in
Animals
,
Astrocytes - cytology
,
Astrocytes - metabolism
2015
Ion channels included in the family of Connexins (Cx) help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50) in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC). epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI) (epSPCi). When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi.
Journal Article