Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Alayyar, Latifah"
Sort by:
Targeted SLC19A3 gene sequencing of 3000 Saudi newborn: a pilot study toward newborn screening
Background Biotin–thiamine‐responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder mostly presented in children. The disorder is described as having subacute encephalopathy with confusion, dystonia, and dysarthria triggered by febrile illness that leads to neuroregression and death if untreated. Using biotin and thiamine at an early stage of the disease can lead to significant improvement. Methods BTBGD is a treatable disease if diagnosed at an early age and has been frequently reported in Saudi population. Keeping this in mind, the current study screened 3000 Saudi newborns for the SLC19A3 gene mutations using target sequencing, aiming to determine the carrier frequency in Saudi Population and whether BTBGD is a good candidate to be included in the newborn‐screened disorders. Results Using targeted gene sequencing, DNA from 3000 newborns Saudi was screened for the SLC19A3 gene mutations using standard methods. Screening of the SLC19A3 gene revealed a previously reported heterozygous missense mutation (c.1264A>G (p.Thr422Ala) in six unrelated newborns. No probands having homozygous pathogenic mutations were found in the studied cohort. The variant has been frequently reported previously in homozygous state in Saudi population, making it a hot spot mutation. The current study showed that the carrier frequency of SLC19A3 gene mutation is 1 of 500 in Saudi newborns. Conclusion For the first time in the literature, we determined the carrier frequency of SLC19A3 gene mutation in Saudi population. The estimated prevalence is too rare in Saudi population (at least one in million); therefore, the data are not in favor of including such very rare disorders in newborn screening program at population level. However, a larger cohort is needed for a more accurate estimate.
Pancytopenia, Recurrent Infection, Poor Wound Healing, Heterotopia of the Brain Probably Associated with A Candidate Novel de Novo CDC42 Gene Defect: Expanding the Molecular and Phenotypic Spectrum
CDC42 (cell division cycle protein 42) belongs to the Rho GTPase family that is known to control the signaling axis that regulates several cellular functions, including cell cycle progression, migration, and proliferation. However, the functional characterization of the CDC42 gene in mammalian physiology remains largely unclear. Here, we report the genetic and functional characterization of a non-consanguineous Saudi family with a single affected individual. Clinical examinations revealed poor wound healing, heterotopia of the brain, pancytopenia, and recurrent infections. Whole exome sequencing revealed a de novo missense variant (c.101C > A, p.Pro34Gln) in the CDC42 gene. The functional assays revealed a substantial reduction in the growth and motility of the patient cells as compared to the normal cells control. Homology three-dimensional (3-D) modeling of CDC42 revealed that the Pro34 is important for the proper protein secondary structure. In conclusion, we report a candidate disease-causing variant, which requires further confirmation for the etiology of CDC42 pathogenesis. This represents the first case from the Saudi population. The current study adds to the spectrum of mutations in the CDC42 gene that might help in genetic counseling and contributes to the CDC42-related genetic and functional characterization. However, further studies into the molecular mechanisms that are involved are needed in order to determine the role of the CDC42 gene associated with aberrant cell migration and immune response.
Circular Carbon Economy (CCE): A Way to Invest CO2 and Protect the Environment, a Review
Increased levels of carbon dioxide have revolutionised the Earth; higher temperatures, melting icecaps, and flooding are now more prevalent. Fortunately, renewable energy mitigates this problem by making up 20% of human energy needs. However, from a “green environment” perspective, can carbon dioxide emissions in the atmosphere be reduced and eliminated? The carbon economic circle is an ideal solution to this problem, as it enables us to store, use, and remove carbon dioxide. This research introduces the circular carbon economy (CCE) and addresses its economic importance. Additionally, the paper discusses carbon capture and storage (CCS), and the utilisation of CO2. Furthermore, it explains current technologies and their future applications on environmental impact, CO2 capture, utilisation, and storage (CCUS). Various opinions on the best way to achieve zero carbon emissions and on CO2 applications and their economic impact are also discussed. The circular carbon economy can be achieved through a highly transparent global administration that is supportive of advanced technologies that contribute to the efficient utilisation of energy sources. This global administration must also provide facilities to modernise and develop factories and power stations, based on emission-reducing technologies. Monitoring emissions in countries through a global monitoring network system, based on actual field measurements, linked to a worldwide database allows all stakeholders to track the change in greenhouse gas emissions. The process of sequestering carbon dioxide in the ocean is affected by the support for technologies and industries that adopt the principle of carbon recycling in order to maintain the balance. This includes supporting initiatives that contribute to increasing vegetation cover and preserving oceans from pollutants, especially chemicals and radioactive pollutants, which will undoubtedly affect the process of sequestering carbon dioxide in the oceans, and this will contribute significantly to maintaining carbon dioxide at acceptable levels.
Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion, Review
Various carbon dioxide (CO2) capture materials and processes have been developed in recent years. The absorption-based capturing process is the most significant among other processes, which is widely recognized because of its effectiveness. CO2 can be used as a feedstock for the production of valuable chemicals, which will assist in alleviating the issues caused by excessive CO2 levels in the atmosphere. However, the interaction of carbon dioxide with other substances is laborious because carbon dioxide is dynamically relatively stable. Therefore, there is a need to develop types of catalysts that can break the bond in CO2 and thus be used as feedstock to produce materials of economic value. Metal oxide-based processes that convert carbon dioxide into other compounds have recently attracted attention. Metal oxides play a pivotal role in CO2 hydrogenation, as they provide additional advantages, such as selectivity and energy efficiency. This review provides an overview of the types of metal oxides and their use for carbon dioxide adsorption and conversion applications, allowing researchers to take advantage of this information in order to develop new catalysts or methods for preparing catalysts to obtain materials of economic value.
Circular Carbon Economy : A Way to Invest COsub.2 and Protect the Environment, a Review
Increased levels of carbon dioxide have revolutionised the Earth; higher temperatures, melting icecaps, and flooding are now more prevalent. Fortunately, renewable energy mitigates this problem by making up 20% of human energy needs. However, from a “green environment” perspective, can carbon dioxide emissions in the atmosphere be reduced and eliminated? The carbon economic circle is an ideal solution to this problem, as it enables us to store, use, and remove carbon dioxide. This research introduces the circular carbon economy (CCE) and addresses its economic importance. Additionally, the paper discusses carbon capture and storage (CCS), and the utilisation of CO[sub.2] . Furthermore, it explains current technologies and their future applications on environmental impact, CO[sub.2] capture, utilisation, and storage (CCUS). Various opinions on the best way to achieve zero carbon emissions and on CO[sub.2] applications and their economic impact are also discussed. The circular carbon economy can be achieved through a highly transparent global administration that is supportive of advanced technologies that contribute to the efficient utilisation of energy sources. This global administration must also provide facilities to modernise and develop factories and power stations, based on emission-reducing technologies. Monitoring emissions in countries through a global monitoring network system, based on actual field measurements, linked to a worldwide database allows all stakeholders to track the change in greenhouse gas emissions. The process of sequestering carbon dioxide in the ocean is affected by the support for technologies and industries that adopt the principle of carbon recycling in order to maintain the balance. This includes supporting initiatives that contribute to increasing vegetation cover and preserving oceans from pollutants, especially chemicals and radioactive pollutants, which will undoubtedly affect the process of sequestering carbon dioxide in the oceans, and this will contribute significantly to maintaining carbon dioxide at acceptable levels.