Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Alberts, Jeremy M."
Sort by:
Watershed Land Use and Seasonal Variation Constrain the Influence of Riparian Canopy Cover on Stream Ecosystem Metabolism
Ecosystem metabolism is an important determinant of trophic structure, nutrient cycling, and other critical ecosystem processes in streams. Whereas watershed- and local-scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at different scales interact to determine stream metabolic rates, particularly in urban streams and across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons. Gross primary production (GPP), ecosystem respiration, and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy, and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams, supported higher rates of GPP than the closed canopy which reaches during the summer and fall, when the overhead vegetation shaded the closed reaches. The effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP < 0) and net autotrophy (NEP > 0) at the reach-scale during seasons with dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like nighttime hypoxia. Our study suggests that although watershed urbanization fundamentally alters ecosystem function, the preservation and restoration of canopied riparian zones can provide an important management tool at the local scale, with the strongest impacts on stream metabolism during summer.
Response to basal resources by stream macroinvertebrates is shaped by watershed urbanization, riparian canopy cover, and season
Riparian reforestation is a common restoration action in urban streams, but relatively little is known about the influence of local riparian vegetation in the face of watershed-scale urban land cover. Allochthonous organic matter and benthic algae are important basal energy resources in streams, but the roles of watershed urbanization vs near-stream vegetation in the availability of these resources are not well understood. Our goal was to understand how the interaction of land cover at 2 spatial scales (watershed vs reach) and seasonal dynamics shape basal resources and their effects on macroinvertebrate communities. We assessed relationships between seasonal patterns in standing stocks of particulate organic matter (POM) and benthic periphyton and macroinvertebrate community composition in open- and closed-canopy reaches of 4 urban and 4 reference streams in northern Kentucky, USA. POM standing stocks were not strongly influenced by watershed or riparian condition. Benthic algal biomass was greater in urban than in reference streams in all seasons and in open than in closed riparian canopies in summer when light levels are most affected by a deciduous canopy. Relationships between macroinvertebrate functional feeding group (FFG) biomass and their primary food resources were influenced by watershed land use and season, but riparian canopy effects were minor. The proportion of collectors varied by season, whereas the proportion of shredders was higher in reference than urban streams. Scraper biomass was influenced by benthic algal biomass and varied seasonally, whereas predator biomass was driven by prey-insect biomass. Periphyton density was affected by the interaction of watershed- and reach-scale land cover and was the only basal resource strongly related to consumer taxa. Watershed land use influences the stream ecosystem, but local riparian canopy may be important in limiting benthic algal accumulation.