Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
88 result(s) for "Alberts, Stacey"
Sort by:
From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution
Environment is one of the primary drivers of galaxy evolution; via multiple mechanisms, it can control the critical process of transforming galaxies from star forming to quiescent, commonly termed “quenching”. Despite its importance, however, we still do not have a clear view of how environmentally-driven quenching proceeds even in the most extreme environments: galaxy clusters and their progenitor proto-clusters. Recent advances in infrared capabilities have enabled transformative progress not only in the identification of these structures but in detailed analyses of quiescence, obscured star formation, and molecular gas in (proto-)cluster galaxies across cosmic time. In this review, we will discuss the current state of the literature regarding the quenching of galaxies in (proto-)clusters from the observational, infrared perspective. Our improved understanding of environmental galaxy evolution comes from unique observables across the distinct regimes of the near-, mid-, and far-infrared, crucial in the push to high redshift where massive galaxy growth is dominated by highly extinct, infrared-bright galaxies.
Spectroscopic confirmation of two luminous galaxies at a redshift of 14
The first observations of the James Webb Space Telescope (JWST) have revolutionized our understanding of the Universe by identifying galaxies at redshift z  ≈ 13 (refs. 1 , 2 – 3 ). In addition, the discovery of many luminous galaxies at Cosmic Dawn ( z  > 10) has suggested that galaxies developed rapidly, in apparent tension with many standard models 4 , 5 , 6 , 7 – 8 . However, most of these galaxies lack spectroscopic confirmation, so their distances and properties are uncertain. Here we present JWST Advanced Deep Extragalactic Survey–Near-Infrared Spectrograph spectroscopic confirmation of two luminous galaxies at z = 14.32 − 0.20 + 0.08 and z  = 13.90 ± 0.17. The spectra reveal ultraviolet continua with prominent Lyman-α breaks but no detected emission lines. This discovery proves that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected before JWST. The most distant of the two galaxies is unexpectedly luminous and is spatially resolved with a radius of 260 parsecs. Considering also the very steep ultraviolet slope of the second galaxy, we conclude that both are dominated by stellar continuum emission, showing that the excess of luminous galaxies in the early Universe cannot be entirely explained by accretion onto black holes. Galaxy formation models will need to address the existence of such large and luminous galaxies so early in cosmic history. JWST–NIRSpec spectroscopic confirmation of two luminous galaxies is presented, proving that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected before JWST.
The Quantum Efficiency and Diffractive Image Artifacts of Si
Arsenic doped back illuminated blocked impurity band (BIBIB) silicon detectors have advanced near and mid-IR astronomy for over thirty years; they have high quantum efficiency (QE), especially at wavelengths longer than 10 μm, and a large spectral range. Their radiation hardness is also an asset for space based instruments. Three examples of Si:As BIBIB arrays are used in the Mid-InfraRed Instrument (MIRI) of the James Webb Space Telescope (JWST), observing between 5 and 28 μm. In this paper, we analyze the parameters leading to high quantum efficiency (up to ∼60%) for the MIRI devices between 5 and 10 μm. We also model the cross-shaped artifact that was first noticed in the 5.7 and 7.8 μm Spitzer/IRAC images and has since also been imaged at shorter wavelength (≤10 μm) laboratory tests of the MIRI detectors. The artifact is a result of internal reflective diffraction off the pixel-defining metallic contacts to the readout detector circuit. The low absorption in the arrays at the shorter wavelengths enables photons diffracted to wide angles to cross the detectors and substrates multiple times. This is related to similar behavior in other back illuminated solid-state detectors with poor absorption, such as conventional CCDs operating near 1 μm. We investigate the properties of the artifact and its dependence on the detector architecture with a quantum-electrodynamic (QED) model of the probabilities of various photon paths. Knowledge of the artifact properties will be especially important for observations with the MIRI LRS and MRS spectroscopic modes.
A recently quenched galaxy 700 million years after the Big Bang
Local and low-redshift ( z  < 3) galaxies are known to broadly follow a bimodal distribution: actively star-forming galaxies with relatively stable star-formation rates and passive systems. These two populations are connected by galaxies in relatively slow transition. By contrast, theory predicts that star formation was stochastic at early cosmic times and in low-mass systems 1 – 4 . These galaxies transitioned rapidly between starburst episodes and phases of suppressed star formation, potentially even causing temporary quiescence—so-called mini-quenching events 5 , 6 . However, the regime of star-formation burstiness is observationally highly unconstrained. Directly observing mini-quenched galaxies in the primordial Universe is therefore of utmost importance to constrain models of galaxy formation and transformation 7 , 8 . Early quenched galaxies have been identified out to redshift z  < 5 (refs.  9 – 12 ) and these are all found to be massive ( M ⋆  > 10 10   M ⊙ ) and relatively old. Here we report a (mini-)quenched galaxy at z  = 7.3, when the Universe was only 700 Myr old. The JWST/NIRSpec spectrum is very blue ( U – V  = 0.16 ± 0.03 mag) but exhibits a Balmer break and no nebular emission lines. The galaxy experienced a short starburst followed by rapid quenching; its stellar mass (4–6 × 10 8   M ⊙ ) falls in a range that is sensitive to various feedback mechanisms, which can result in perhaps only temporary quenching. Analysis of the JWST/NIRSpec spectrum of the recently observed Lyman-break galaxy JADES-GS+53.15508-27.80178 revealed a redshift of z  = 7.3, a Balmer break and a complete absence of nebular emission lines, indicating that quenching occurred only 700 million years after the Big Bang.
Carbonaceous dust grains seen in the first billion years of cosmic time
Large dust reservoirs (up to approximately 10 8  M ⊙ ) have been detected 1 – 3 in galaxies out to redshift z  ≃ 8, when the age of the Universe was only about 600 Myr. Generating substantial amounts of dust within such a short timescale has proven challenging for theories of dust formation 4 , 5 and has prompted the revision of the modelling of potential sites of dust production 6 – 8 , such as the atmospheres of asymptotic giant branch stars in low-metallicity environments, supernova ejecta and the accelerated growth of grains in the interstellar medium. However, degeneracies between different evolutionary pathways remain when the total dust mass of galaxies is the only available observable. Here we report observations of the 2,175 Å dust attenuation feature, which is well known in the Milky Way and galaxies at z  ≲ 3 (refs. 9 – 11 ), in the near-infrared spectra of galaxies up to z  ≃ 7, corresponding to the first billion years of cosmic time. The relatively short timescale implied for the formation of carbonaceous grains giving rise to this feature 12 suggests a rapid production process, possibly in Wolf–Rayet stars or supernova ejecta. An (ultraviolet) dust attenuation feature at 2,175 Å, attributed to carbonaceous dust grains in the Milky Way and nearby galaxies, also exists in galaxies up to a redshift of 7.
Spectroscopic confirmation of two luminous galaxies at a redshift of 14
The first observations of thejames Webb Space Telescope (JWST) have revolutionized our understanding of the Universe by identifying galaxies at redshift z ~ 13 (refs. 1-3). In addition, the discovery of many luminous galaxies at Cosmic Dawn (z > 10) has suggested that galaxies developed rapidly, in apparent tension with many standard models4 8. However, most of these galaxies lack spectroscopic confirmation, so their distances and properties are uncertain. Here we present JWST Advanced Deep Extragalactic Survey-Near-Infrared Spectrograph spectroscopic confirmation of two luminous galaxies at z = 14.32+0.08-0.20 and z = 13.90 ± 0.17. The spectra reveal ultraviolet continua with prominent Lyman-a breaks but no detected emission lines. This discovery proves that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected beforeJWST. The most distant of the two galaxies is unexpectedly luminous and is spatially resolved with a radius of260 parsecs. Considering also the very steep ultraviolet slope of the second galaxy, we conclude that both are dominated by stellar continuum emission, showing that the excess of luminous galaxies in the early Universe cannot be entirely explained by accretion onto black holes. Galaxy formation models will need to address the existence of such large and luminous galaxies so early in cosmic history.
The Quantum Efficiency and Diffractive Image Artifacts of Si:As IBC mid-IR Detector Arrays at 5-10 m: Implications for the JWST/MIRI Detectors
Arsenic doped back illuminated blocked impurity band (BIBIB) silicon detectors have advanced near and mid-IR astronomy for over thirty years; they have high quantum efficiency (QE), especially at wavelengths longer than 10 m, and a large spectral range. Their radiation hardness is also an asset for space based instruments. Three examples of Si:As BIBIB arrays are used in the Mid-InfraRed Instrument (MIRI) of the James Webb Space Telescope (JWST), observing between 5 and 28 m. In this paper, we analyze the parameters leading to high quantum efficiency (up to ∼60%) for the MIRI devices between 5 and 10 m. We also model the cross-shaped artifact that was first noticed in the 5.7 and 7.8 m Spitzer/IRAC images and has since also been imaged at shorter wavelength (≤10 m) laboratory tests of the MIRI detectors. The artifact is a result of internal reflective diffraction off the pixel-defining metallic contacts to the readout detector circuit. The low absorption in the arrays at the shorter wavelengths enables photons diffracted to wide angles to cross the detectors and substrates multiple times. This is related to similar behavior in other back illuminated solid-state detectors with poor absorption, such as conventional CCDs operating near 1 m. We investigate the properties of the artifact and its dependence on the detector architecture with a quantum-electrodynamic (QED) model of the probabilities of various photon paths. Knowledge of the artifact properties will be especially important for observations with the MIRI LRS and MRS spectroscopic modes.
Connecting black holes and galaxies in faint radio populations at cosmic noon
We leverage new ultra-deep, high resolution, multi-frequency radio imaging at 6 and 3 GHz with the unique datasets available in the GOODS-S/HUDF region in order to assess the AGN fraction in a faint radio-selected sample. For AGN identification, we adopt a multi-wavelength approach, combining X-ray and (mid-)infrared (IR) selections with radio identification such as X-ray to radio excess, flat radio spectral slopes, and the radio-IR correlation. We identify AGN in 43% of our radio sample, yielding an AGN source density of ∼ 1 arcmin −2 . This AGN fraction is likely underestimated, as 1) our shallower 3 GHz data is biased against flat radio spectrum sources and 2) all of our selections may be biased against the most heavily obscured AGN. The James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) will address the latter issue and we briefly outline our Cycle 1 Guaranteed Time Observation (GTO) program to search for heavily obscured AGN.
From Clusters to Proto-clusters: the Infrared Perspective on Environmental Galaxy Evolution
Environment is one of the primary drivers of galaxy evolution; via multiple mechanisms, it can control the critical process of transforming galaxies from star forming to quiescent, commonly termed \"quenching\". Despite its importance, however, we still do not have a clear view of how environmentally-driven quenching proceeds even in the most extreme environments: galaxy clusters and their progenitor proto-clusters. Recent advances in infrared capabilities have enabled transformative progress not only in the identification of these structures but in detailed analyses of quiescence, obscured star formation, and molecular gas in (proto-)cluster galaxies across cosmic time. In this review, we will discuss the current state of the literature regarding the quenching of galaxies in (proto-)clusters from the observational, infrared perspective. Our improved understanding of environmental galaxy evolution comes from unique observables across the distinct regimes of the near-, mid-, and far-infrared, crucial in the push to high redshift where massive galaxy growth is dominated by highly extincted, infrared-bright galaxies.
AGN Selection and Demographics in GOODS-S/HUDF from X-ray to Radio
We present a comprehensive census of the AGNs in the GOODS-S/HUDF region from the X-ray to the radio, covering both the obscured and unobscured populations. This work includes a robust analysis of the source optical-to-mid-IR SEDs featuring (semi-)empirical AGN and galaxy dust emission models and Baysian fitting techniques, ultra-deep VLA 3 and 6 GHz observations, and an integrated analysis of various AGN selection techniques, including X-ray properties, UV-to-MIR SED analysis, optical spectral features, mid-IR colors, radio loudness and spectral slope, and AGN variability. In total, we report \\(\\sim\\)900 AGNs over the \\(\\sim\\)170 arcmin\\(^2\\) 3D-HST GOODS-S footprint, which has doubled the AGN number identified in the previous X-ray sample with \\(\\sim\\)26\\% of our sample undetected in the deepest Chandra image. With a summary of AGN demographics from different selection methods, we find that no one single band or technique comes close to selecting a complete AGN sample despite the great depth of the data in GOODS-S/HUDF. We estimate the yields of various approaches and explore the reasons for incompleteness. We characterize the statistical properties, such as source number density, obscuration fraction and luminosity function of the AGN sample in this field and discuss their immediate implications. We also provide some qualitative predictions of the AGN sample that might be discovered by the upcoming JWST surveys.