Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
59 result(s) for "Alduino, C."
Sort by:
Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE
The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937 1 . Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis 2 , the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0 νββ ) decay. Here we show results from the search for 0 νββ decay of 130 Te, using the latest advanced cryogenic calorimeters with the CUORE experiment 3 . CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0 νββ decay and set a lower bound of the process half-life as 2.2 × 10 25  years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment. The CUORE experiment finds no evidence for neutrinoless double beta decay after operating a large cryogenic TeO 2 calorimeter stably for several years in an extreme low-radiation environment at a temperature of 10 millikelvin.
The projected background for the CUORE experiment
The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of 130 Te with an array of 988 TeO 2  bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the 130 Te decay half-life of 9 × 10 25 years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10 - 2  counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of 130 Te is expected.
Measurement of the two-neutrino double-beta decay half-life of$$^{130}$$ Te with the CUORE-0 experiment
We report on the measurement of the two-neutrino double-beta decay half-life of [Formula omitted]Te with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO [Formula omitted], the half-life is determined to be [Formula omitted] = [8.2 ± 0.2 (stat.) ± 0.6 (syst.)] [Formula omitted] 10 [Formula omitted] year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the [Formula omitted]Te neutrinoless double-beta decay region of interest.
Search for double-beta decay of 130Te to the 0+ states of 130Xe with CUORE
The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay (0νββ) in the isotope 130Te. In this work we present the latest results on two searches for the double beta decay (DBD) of 130Te to the first 02+ excited state of 130Xe: the 0νββ decay and the Standard Model-allowed two-neutrinos double beta decay (2νββ). Both searches are based on a 372.5 kg×yr TeO2 exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as S1/20ν=5.6×1024yr for the 0νββ decay and S1/22ν=2.1×1024yr for the 2νββ decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at 90% C.I. on the decay half lives is obtained as: (T1/2)02+0ν>5.9×1024yr for the 0νββ mode and (T1/2)02+2ν>1.3×1024yr for the 2νββ mode. These represent the most stringent limits on the DBD of 130Te to excited states and improve by a factor ∼5 the previous results on this process.
Low energy analysis techniques for CUORE
CUORE is a tonne-scale cryogenic detector operating at the Laboratori Nazionali del Gran Sasso (LNGS) that uses tellurium dioxide bolometers to search for neutrinoless double-beta decay of 130 Te. CUORE is also suitable to search for low energy rare events such as solar axions or WIMP scattering, thanks to its ultra-low background and large target mass. However, to conduct such sensitive searches requires improving the energy threshold to 10 keV. In this paper, we describe the analysis techniques developed for the low energy analysis of CUORE-like detectors, using the data acquired from November 2013 to March 2015 by CUORE-0, a single-tower prototype designed to validate the assembly procedure and new cleaning techniques of CUORE. We explain the energy threshold optimization, continuous monitoring of the trigger efficiency, data and event selection, and energy calibration at low energies in detail. We also present the low energy background spectrum of CUORE-0 below 60 keV . Finally, we report the sensitivity of CUORE to WIMP annual modulation using the CUORE-0 energy threshold and background, as well as an estimate of the uncertainty on the nuclear quenching factor from nuclear recoils inCUORE-0.
The CUORE Detector and Results
The cryogenic underground observatory for rare events (CUORE) is a cryogenic experiment searching for neutrinoless double beta decay ( 0 ν β β ) of 130 Te . The detector consists of an array of 988 TeO 2 crystals arranged in a compact cylindrical structure of 19 towers. We report the CUORE initial operations and optimization campaigns. We then present the CUORE results on 0 ν β β and 2 ν β β decay of 130 Te obtained from the analysis of the physics data acquired in 2017.
Expected sensitivity to 128Te neutrinoless double beta decay with the CUORE TeO2 cryogenic bolometers
The CUORE experiment is a ton-scale array of TeO 2 cryogenic bolometers located at the underground Laboratori Nazionali del Gran Sasso of Istituto Nazionale di Fisica Nucleare (INFN), in Italy. The CUORE detector consists of 988 crystals operated as source and detector at a base temperature of ∼ 10 mK. Such cryogenic temperature is reached and maintained by means of a custom built cryogen-free dilution cryostat, designed with the aim of minimizing the vibrational noise and the environmental radioactivity. The primary goal of CUORE is the search for neutrinoless double beta decay of 130 Te , but thanks to its large target mass and ultra-low background it is suitable for the study of other rare processes as well, such as the neutrinoless double beta decay of 128 Te . This tellurium isotope is an attractive candidate for the search of this process, due to its high natural isotopic abundance of 31.75%. The transition energy at (866.7 ± 0.7) keV lies in a highly populated region of the energy spectrum, dominated by the contribution of the two-neutrino double beta decay of 130 Te . As the first ton-scale infrastructure operating cryogenic TeO 2 bolometers in stable conditions, CUORE is able to achieve a factor > 10 higher sensitivity to the neutrinoless double beta decay of this isotope with respect to past direct experiments.
Latest Results from the CUORE Experiment
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for 0 ν β β decay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988 TeO 2 crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its 3 rd result of the search for 0 ν β β , corresponding to a tonne-year of TeO 2 exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of 0 ν β β decay in 130 Te ever conducted . We present the current status of CUORE search for 0 ν β β with the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the 130 Te 2 ν β β decay half-life and decay to excited states of 130 Xe , studies performed using an exposure of 300.7 kg yr.
CUORE sensitivity to Formula omitted decay
We report a study of the CUORE sensitivity to neutrinoless double beta ( [Formula omitted]) decay. We used a Bayesian analysis based on a toy Monte Carlo (MC) approach to extract the exclusion sensitivity to the [Formula omitted] decay half-life ( [Formula omitted]) at [Formula omitted] credibility interval (CI) - i.e. the interval containing the true value of [Formula omitted] with [Formula omitted] probability - and the [Formula omitted] discovery sensitivity. We consider various background levels and energy resolutions, and describe the influence of the data division in subsets with different background levels. If the background level and the energy resolution meet the expectation, CUORE will reach a [Formula omitted] CI exclusion sensitivity of [Formula omitted] year with 3 months, and [Formula omitted] year with 5 years of live time. Under the same conditions, the discovery sensitivity after 3 months and 5 years will be [Formula omitted] year and [Formula omitted] year, respectively.
Double-beta decay of \\^{130}\\hbox {Te}\\ to the first \\0^+\\ excited state of \\^{130}\\hbox {Xe}\\ with CUORE-0
We report on a search for double beta decay of \\[^{130}\\hbox {Te}\\] to the first \\[0^{+}\\] excited state of \\[^{130}\\hbox {Xe}\\] using a \\[9.8\\,\\hbox {kg}\\cdot \\hbox {yr}\\] exposure of \\[^{130}\\hbox {Te}\\] collected with the CUORE-0 experiment. In this work we exploit different topologies of coincident events to search for both the neutrinoless and two-neutrino double beta decay modes. We find no evidence for either mode and place lower bounds on the half-lives: \\[T^{0\\nu }_{0^+_1}>7.9\\cdot 10^{23}\\hbox {yr}\\] and \\[T^{2\\nu }_{0^+_1}>2.4\\cdot 10^{23}\\hbox {yr}\\] (\\[90\\%\\,\\hbox {CL}\\]). Combining our results with those obtained by the CUORICINO experiment, we achieve the most stringent constraints available for these processes: \\[T^{0\\nu }_{0^+_1}>1.4\\cdot 10^{24}\\hbox {yr}\\] and \\[T^{2\\nu }_{0^+_1}>2.5\\cdot 10^{23}\\hbox {yr}\\] (\\[90\\%\\,\\hbox {CL}\\]).