Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
334
result(s) for
"Alessandro Vespignani"
Sort by:
The Parable of Google Flu: Traps in Big Data Analysis
2014
Large errors in flu prediction were largely avoidable, which offers lessons for the use of big data. In February 2013, Google Flu Trends (GFT) made headlines but not for a reason that Google executives or the creators of the flu tracking system would have hoped. Nature reported that GFT was predicting more than double the proportion of doctor visits for influenza-like illness (ILI) than the Centers for Disease Control and Prevention (CDC), which bases its estimates on surveillance reports from laboratories across the United States ( 1 , 2 ). This happened despite the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data ( 3 , 4 ), what lessons can we draw from this error?
Journal Article
Estimating the effect of social inequalities on the mitigation of COVID-19 across communities in Santiago de Chile
by
Perra, Nicola
,
Chinazzi, Matteo
,
Vespignani, Alessandro
in
639/766/530/2801
,
692/308/174
,
692/699/255/2514
2021
We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic.
Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data.
Journal Article
Science of science
by
Bergstrom, Carl T.
,
Evans, James A.
,
Radicchi, Filippo
in
Careers
,
Collaboration
,
Computer applications
2018
The science of science (SciSci) is based on a transdisciplinary approach that uses large data sets to study the mechanisms underlying the doing of science—from the choice of a research problem to career trajectories and progress within a field. In a Review, Fortunato et al. explain that the underlying rationale is that with a deeper understanding of the precursors of impactful science, it will be possible to develop systems and policies that improve each scientist's ability to succeed and enhance the prospects of science as a whole. Science , this issue p. eaao0185 Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise—for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field.
Journal Article
Phase transitions in contagion processes mediated by recurrent mobility patterns
2011
Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumours, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modelled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyse contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models because of the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behaviour by analysing diffusion processes mediated by real human commuting data.
Extensive datasets such as those capturing the movement of mobile-phone users have provided us with a new basis for modelling human mobility, a process that has been shown to be highly predictable. This study now shows how recurrent patterns in how we move influence contagion processes, such as the spatial spread of infectious diseases.
Journal Article
Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number
2011
Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the 'economy of attention' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.
Journal Article
Inferring high-resolution human mixing patterns for disease modeling
by
Fumanelli, Laura
,
Chinazzi, Matteo
,
Longini, Ira M.
in
631/114/2397
,
692/700/478/174
,
Age Factors
2021
Mathematical and computational modeling approaches are increasingly used as quantitative tools in the analysis and forecasting of infectious disease epidemics. The growing need for realism in addressing complex public health questions is, however, calling for accurate models of the human contact patterns that govern the disease transmission processes. Here we present a data-driven approach to generate effective population-level contact matrices by using highly detailed macro (census) and micro (survey) data on key socio-demographic features. We produce age-stratified contact matrices for 35 countries, including 277 sub-national administratvie regions of 8 of those countries, covering approximately 3.5 billion people and reflecting the high degree of cultural and societal diversity of the focus countries. We use the derived contact matrices to model the spread of airborne infectious diseases and show that sub-national heterogeneities in human mixing patterns have a marked impact on epidemic indicators such as the reproduction number and overall attack rate of epidemics of the same etiology. The contact patterns derived here are made publicly available as a modeling tool to study the impact of socio-economic differences and demographic heterogeneities across populations on the epidemiology of infectious diseases.
The growing need for realism in addressing complex public health questions calls for accurate models of the human contact patterns that govern disease transmission. Here, the authors generate effective population-level contact matrices by using highly detailed macro (census) and micro (survey) data on key socio-demographic features.
Journal Article
Phase transitions in information spreading on structured populations
by
Moreno, Yamir
,
Davis, Jessica T.
,
Perra, Nicola
in
639/766/530/2795
,
639/766/530/2801
,
Atomic
2020
Mathematical models of social contagion that incorporate networks of human interactions have become increasingly popular, however, very few approaches have tackled the challenges of including complex and realistic properties of socio-technical systems. Here, we define a framework to characterize the dynamics of the Maki–Thompson rumour spreading model in structured populations, and analytically find a previously uncharacterized dynamical phase transition that separates the local and global contagion regimes. We validate our threshold prediction through extensive Monte Carlo simulations. Furthermore, we apply this framework in two real-world systems, the European commuting and transportation network and the Digital Bibliography and Library Project collaboration network. Our findings highlight the importance of the underlying population structure in understanding social contagion phenomena and have the potential to define new intervention strategies aimed at hindering or facilitating the diffusion of information in socio-technical systems.
The mathematical modelling of how information spreads in social networks has latterly gained fresh urgency. A study of realistic structured populations now identifies the threshold at which the propagation of rumours becomes contagious, thereby inducing a phase transition.
Journal Article
Measurability of the epidemic reproduction number in data-driven contact networks
by
Moreno, Yamir
,
Ajelli, Marco
,
Liu, Quan-Hui
in
Basic Reproduction Number - statistics & numerical data
,
Biological Sciences
,
Biophysics and Computational Biology
2018
The basic reproduction number is one of the conceptual cornerstones of mathematical epidemiology. Its classical definition as the number of secondary cases generated by a typical infected individual in a fully susceptible population finds a clear analytical expression in homogeneous and stratified mixing models. Along with the generation time (the interval between primary and secondary cases), the reproduction number allows for the characterization of the dynamics of an epidemic. A clear-cut theoretical picture, however, is hardly found in real data. Here, we infer from highly detailed sociodemographic data two multiplex contact networks representative of a subset of the Italian and Dutch populations. We then simulate an infection transmission process on these networks accounting for the natural history of influenza and calibrated on empirical epidemiological data. We explicitly measure the reproduction number and generation time, recording all individual-level transmission events. We find that the classical concept of the basic reproduction number is untenable in realistic populations, and it does not provide any conceptual understanding of the epidemic evolution. This departure from the classical theoretical picture is not due to behavioral changes and other exogenous epidemiological determinants. Rather, it can be simply explained by the (clustered) contact structure of the population. Finally, we provide evidence that methodologies aimed at estimating the instantaneous reproduction number can operationally be used to characterize the correct epidemic dynamics from incidence data.
Journal Article
Big Data for Infectious Disease Surveillance and Modeling
by
Viboud, Cécile
,
Simonsen, Lone
,
Chowell, Gerardo
in
Big Data for Infectious Disease Surveillance and Modeling
,
Communicable Diseases - epidemiology
,
Communicable Diseases - transmission
2016
We devote a special issue of the Journal of Infectious Diseases to review the recent advances of big data in strengthening disease surveillance, monitoring medical adverse events, informing transmission models, and tracking patient sentiments and mobility. We consider a broad definition of big data for public health, one encompassing patient information gathered from high-volume electronic health records and participatory surveillance systems, as well as mining of digital traces such as social media, Internet searches, and cell-phone logs. We introduce nine independent contributions to this special issue and highlight several cross-cutting areas that require further research, including representativeness, biases, volatility, and validation, and the need for robust statistical and hypotheses-driven analyses. Overall, we are optimistic that the big-data revolution will vastly improve the granularity and time-liness of available epidemiological information, with hybrid systems augmenting rather than supplanting traditional surveillance systems, and better prospects for accurate infectious diseases models and forecasts.
Journal Article
Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China
by
Viboud, Cécile
,
Luo, Kaiwei
,
Zeng, Ge
in
631/326/596/2562
,
631/326/596/4130
,
692/700/459/1748
2021
Several mechanisms driving SARS-CoV-2 transmission remain unclear. Based on individual records of 1178 potential SARS-CoV-2 infectors and their 15,648 contacts in Hunan, China, we estimated key transmission parameters. The mean generation time was estimated to be 5.7 (median: 5.5, IQR: 4.5, 6.8) days, with infectiousness peaking 1.8 days before symptom onset, with 95% of transmission events occurring between 8.8 days before and 9.5 days after symptom onset. Most transmission events occurred during the pre-symptomatic phase (59.2%). SARS-CoV-2 susceptibility to infection increases with age, while transmissibility is not significantly different between age groups and between symptomatic and asymptomatic individuals. Contacts in households and exposure to first-generation cases are associated with higher odds of transmission. Our findings support the hypothesis that children can effectively transmit SARS-CoV-2 and highlight how pre-symptomatic and asymptomatic transmission can hinder control efforts.
Detailed knowledge of COVID-19 epidemiology is needed to inform public health responses. Here, the authors use large-scale contact tracing data to provide empirical estimates of key parameters, and show that susceptibility increases with age but transmissibility does not vary significantly.
Journal Article