Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
37
result(s) for
"Alföldi, Jessica"
Sort by:
Progressive Cactus is a multiple-genome aligner for the thousand-genome era
2020
New genome assemblies have been arriving at a rapidly increasing pace, thanks to decreases in sequencing costs and improvements in third-generation sequencing technologies
1
–
3
. For example, the number of vertebrate genome assemblies currently in the NCBI (National Center for Biotechnology Information) database
4
increased by more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition to this influx of assemblies from different species, new human de novo assemblies
5
are being produced, which enable the analysis of not only small polymorphisms, but also complex, large-scale structural differences between human individuals and haplotypes. This coming era and its unprecedented amount of data offer the opportunity to uncover many insights into genome evolution but also present challenges in how to adapt current analysis methods to meet the increased scale. Cactus
6
, a reference-free multiple genome alignment program, has been shown to be highly accurate, but the existing implementation scales poorly with increasing numbers of genomes, and struggles in regions of highly duplicated sequences. Here we describe progressive extensions to Cactus to create Progressive Cactus, which enables the reference-free alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality. We describe results from an alignment of more than 600 amniote genomes, which is to our knowledge the largest multiple vertebrate genome alignment created so far.
The Progressive Cactus program can create reference-free alignments of hundreds of large vertebrate genomes efficiently, and is used for the alignment of more than 600 amniote genomes.
Journal Article
Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators
2014
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X–Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner’s syndrome and in phenotypic differences between the sexes in health and disease.
A study comparing the Y chromosome across mammalian species reveals that selection to maintain the ancestral dosage of homologous X–Y gene pairs preserved a handful of genes on the Y chromosome while the rest were lost; the survival of broadly expressed dosage-sensitive regulators of gene expression suggest that the human Y chromosome is essential for male viability.
Evolution and function of the Y chromosome
Mammalian Y chromosomes, known for their roles in sex determination and male fertility, often contain repetitive sequences that make them harder to assemble than the rest of the genome. To counter this problem Henrik Kaessmann and colleagues have developed a new transcript assembly approach based on male-specific RNA/genomic sequencing data to explore Y evolution across 15 species representing all major mammalian lineages. They find evidence for two independent sex chromosome originations in mammals and one in birds. Their analysis of the Y/W gene repertoires suggests that although some genes evolved novel functions in sex determination/spermatogenesis as a result of temporal/spatial expression changes, most Y genes probably persisted, at least initially, as a result of dosage constraints. In a parallel study, Daniel Bellott and colleagues reconstructed the evolution of the Y chromosome, using a comprehensive comparative analysis of the genomic sequence of X–Y gene pairs from seven placental mammals and one marsupial. They conclude that evolution streamlined the gene content of the human Y chromosome through selection to maintain the ancestral dosage of homologous X–Y gene pairs that regulate gene expression throughout the body. They propose that these genes make the Y chromosome essential for male viability and contribute to differences between the sexes in health and disease.
Journal Article
Convergent evolution of the genomes of marine mammals
2015
Andrew Foote and colleagues report the whole-genome sequences and de novo assemblies of three marine mammal species—the walrus, killer whale and manatee—and an improved bottlenose dolphin genome. Their comparative genomic analysis finds evidence of parallel evolution across the marine mammal genomes.
Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed
de novo
assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.
Journal Article
Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes
by
Allen, April N
,
Huentelman, Matthew J
,
Alföldi, Jessica
in
Amino acid sequence
,
Analysis
,
Animal genetics
2013
Background
The green anole lizard,
Anolis carolinensis
, is a key species for both laboratory and field-based studies of evolutionary genetics, development, neurobiology, physiology, behavior, and ecology. As the first non-avian reptilian genome sequenced,
A. carolinesis
is also a prime reptilian model for comparison with other vertebrate genomes. The public databases of Ensembl and NCBI have provided a first generation gene annotation of the anole genome that relies primarily on sequence conservation with related species. A second generation annotation based on tissue-specific transcriptomes would provide a valuable resource for molecular studies.
Results
Here we provide an annotation of the
A. carolinensis
genome based on
de novo
assembly of deep transcriptomes of 14 adult and embryonic tissues. This revised annotation describes 59,373 transcripts, compared to 16,533 and 18,939 currently for Ensembl and NCBI, and 22,962 predicted protein-coding genes. A key improvement in this revised annotation is coverage of untranslated region (UTR) sequences, with 79% and 59% of transcripts containing 5’ and 3’ UTRs, respectively. Gaps in genome sequence from the current
A. carolinensis
build (Anocar2.0) are highlighted by our identification of 16,542 unmapped transcripts, representing 6,695 orthologues, with less than 70% genomic coverage.
Conclusions
Incorporation of tissue-specific transcriptome sequence into the
A. carolinensis
genome annotation has markedly improved its utility for comparative and functional studies. Increased UTR coverage allows for more accurate predicted protein sequence and regulatory analysis. This revised annotation also provides an atlas of gene expression specific to adult and embryonic tissues.
Journal Article
An Improved microRNA Annotation of the Canine Genome
2016
The domestic dog, Canis familiaris, is a valuable model for studying human diseases. The publication of the latest Canine genome build and annotation, CanFam3.1 provides an opportunity to enhance our understanding of gene regulation across tissues in the dog model system. In this study, we used the latest dog genome assembly and small RNA sequencing data from 9 different dog tissues to predict novel miRNAs in the dog genome, as well as to annotate conserved miRNAs from the miRBase database that were missing from the current dog annotation. We used both miRCat and miRDeep2 algorithms to computationally predict miRNA loci. The resulting, putative hairpin sequences were analysed in order to discard false positives, based on predicted secondary structures and patterns of small RNA read alignments. Results were further divided into high and low confidence miRNAs, using the same criteria. We generated tissue specific expression profiles for the resulting set of 811 loci: 720 conserved miRNAs, (207 of which had not been previously annotated in the dog genome) and 91 novel miRNA loci. Comparative analyses revealed 8 putative homologues of some novel miRNA in ferret, and one in microbat. All miRNAs were also classified into the genic and intergenic categories, based on the Ensembl RefSeq gene annotation for CanFam3.1. This additionally allowed us to identify four previously undescribed MiRtrons among our total set of miRNAs. We additionally annotated piRNAs, using proTRAC on the same input data. We thus identified 263 putative clusters, most of which (211 clusters) were found to be expressed in testis. Our results represent an important improvement of the dog genome annotation, paving the way to further research on the evolution of gene regulation, as well as on the contribution of post-transcriptional regulation to pathological conditions.
Journal Article
Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals
by
Casewell, Nicholas R.
,
Hodgson, Wayne C.
,
Albulescu, Laura-Oana
in
Adaptation
,
Animals
,
Biological evolution
2019
Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain under-studied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins.We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.
Journal Article
A genomic mutational constraint map using variation in 76,156 human genomes
by
Wilson, Michael W.
,
Ferriera, Steven
,
O’Donnell-Luria, Anne
in
631/114
,
631/181/2474
,
631/181/457/649
2024
The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders
1
–
4
, but attempts to assess constraint for non-protein-coding regions have proved more difficult. Here we aggregate, process and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD)—the largest public open-access human genome allele frequency reference dataset—and use it to build a genomic constraint map for the whole genome (genomic non-coding constraint of haploinsufficient variation (Gnocchi)). We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation. As expected, the average constraint for protein-coding sequences is stronger than that for non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants that are implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, which in turn suggests that non-coding constraint can aid the identification of constrained genes that are as yet unrecognized by current gene constraint metrics. We demonstrate that this genome-wide constraint map improves the identification and interpretation of functional human genetic variation.
A genomic constraint map for the human genome constructed using data from 76,156 human genomes from the Genome Aggregation Database shows that non-coding constrained regions are enriched for regulatory elements and variants associated with complex diseases and traits.
Journal Article
A structural variation reference for medical and population genetics
2020
Structural variants (SVs) rearrange large segments of DNA
1
and can have profound consequences in evolution and human disease
2
,
3
. As national biobanks, disease-association studies, and clinical genetic testing have grown increasingly reliant on genome sequencing, population references such as the Genome Aggregation Database (gnomAD)
4
have become integral in the interpretation of single-nucleotide variants (SNVs)
5
. However, there are no reference maps of SVs from high-coverage genome sequencing comparable to those for SNVs. Here we present a reference of sequence-resolved SVs constructed from 14,891 genomes across diverse global populations (54% non-European) in gnomAD. We discovered a rich and complex landscape of 433,371 SVs, from which we estimate that SVs are responsible for 25–29% of all rare protein-truncating events per genome. We found strong correlations between natural selection against damaging SNVs and rare SVs that disrupt or duplicate protein-coding sequence, which suggests that genes that are highly intolerant to loss-of-function are also sensitive to increased dosage
6
. We also uncovered modest selection against noncoding SVs in
cis
-regulatory elements, although selection against protein-truncating SVs was stronger than all noncoding effects. Finally, we identified very large (over one megabase), rare SVs in 3.9% of samples, and estimate that 0.13% of individuals may carry an SV that meets the existing criteria for clinically important incidental findings
7
. This SV resource is freely distributed via the gnomAD browser
8
and will have broad utility in population genetics, disease-association studies, and diagnostic screening.
A large empirical assessment of sequence-resolved structural variants from 14,891 genomes across diverse global populations in the Genome Aggregation Database (gnomAD) provides a reference map for disease-association studies, population genetics, and diagnostic screening.
Journal Article
Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci
by
Francioli, Laurent
,
Alfoldi, Jessica
,
Tardif, Jean-Claude
in
Biological Sciences
,
Biological variation
,
Cell lines
2017
The CRISPR-Cas9 nuclease system holds enormous potential for therapeutic genome editing of a wide spectrum of diseases. Large efforts have been made to further understanding of on- and off-target activity to assist the design of CRISPR-based therapies with optimized efficacy and safety. However, current efforts have largely focused on the reference genome or the genome of cell lines to evaluate guide RNA (gRNA) efficiency, safety, and toxicity. Here, we examine the effect of human genetic variation on both on- and off-target specificity. Specifically, we utilize 7,444 whole-genome sequences to examine the effect of variants on the targeting specificity of ∼3,000 gRNAs across 30 therapeutically implicated loci. We demonstrate that human genetic variation can alter the off-target landscape genome-wide including creating and destroying protospacer adjacent motifs (PAMs). Furthermore, single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) can result in altered on-target sites and novel potent off-target sites,which can predispose patients to treatment failure and adverse effects, respectively; however, these events are rare. Taken together, these data highlight the importance of considering individual genomes for therapeutic genome-editing applications for the design and evaluation of CRISPR-based therapies to minimize risk of treatment failure and/or adverse outcomes.
Journal Article
A comprehensive genomic history of extinct and living elephants
by
Palkopoulou, Eleftheria
,
Kortschak, R. Daniel
,
Baleka, Sina
in
admixture
,
Animal behavior
,
Animals
2018
Elephantids are the world’s most iconic megafaunal family, yet there is no comprehensive genomic assessment of their relationships. We report a total of 14 genomes, including 2 from the American mastodon, which is an extinct elephantid relative, and 12 spanning all three extant and three extinct elephantid species including an ∼120,000-y-old straight-tusked elephant, a Columbian mammoth, and woolly mammoths. Earlier genetic studies modeled elephantid evolution via simple bifurcating trees, but here we show that interspecies hybridization has been a recurrent feature of elephantid evolution. We found that the genetic makeup of the straight-tusked elephant, previously placed as a sister group to African forest elephants based on lower coverage data, in fact comprises three major components. Most of the straight-tusked elephant’s ancestry derives from a lineage related to the ancestor of African elephants while its remaining ancestry consists of a large contribution from a lineage related to forest elephants and another related to mammoths. Columbian and woolly mammoths also showed evidence of interbreeding, likely following a latitudinal cline across North America. While hybridization events have shaped elephantid history in profound ways, isolation also appears to have played an important role. Our data reveal nearly complete isolation between the ancestors of the African forest and savanna elephants for ∼500,000 y, providing compelling justification for the conservation of forest and savanna elephants as separate species.
Journal Article