Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
147 result(s) for "Ali, Naushad"
Sort by:
Smart Battery Management Technology in Electric Vehicle Applications: Analytical and Technical Assessment toward Emerging Future Directions
Electric vehicles (EVs) have received widespread attention in the automotive industry as the most promising solution for lowering CO2 emissions and mitigating worldwide environmental concerns. However, the effectiveness of EVs can be affected due to battery health degradation and performance deterioration with lifespan. Therefore, an advanced and smart battery management technology is essential for accurate state estimation, charge balancing, thermal management, and fault diagnosis in enhancing safety and reliability as well as optimizing an EV’s performance effectively. This paper presents an analytical and technical evaluation of the smart battery management system (BMS) in EVs. The analytical study is based on 110 highly influential articles using the Scopus database from the year 2010 to 2020. The analytical analysis evaluates vital indicators, including current research trends, keyword assessment, publishers, research categorization, country analysis, authorship, and collaboration. The technical assessment examines the key components and functions of BMS technology as well as state-of-the-art methods, algorithms, optimization, and control surgeries used in EVs. Furthermore, various key issues and challenges along with several essential guidelines and suggestions are delivered for future improvement. The analytical analysis can guide future researchers in enhancing the technologies of battery energy storage and management for EV applications toward achieving sustainable development goals.
Empowering Fuel Cell Electric Vehicles Towards Sustainable Transportation: An Analytical Assessment, Emerging Energy Management, Key Issues, and Future Research Opportunities
Fuel cell electric vehicles (FCEVs) have received significant attention in recent times due to various advantageous features, such as high energy efficiency, zero emissions, and extended driving range. However, FCEVs have some drawbacks, including high production costs; limited hydrogen refueling infrastructure; and the complexity of converters, controllers, and method execution. To address these challenges, smart energy management involving appropriate converters, controllers, intelligent algorithms, and optimizations is essential for enhancing the effectiveness of FCEVs towards sustainable transportation. Therefore, this paper presents emerging energy management strategies for FCEVs to improve energy efficiency, system reliability, and overall performance. In this context, a comprehensive analytical assessment is conducted to examine several factors, including research trends, types of publications, citation analysis, keyword occurrences, collaborations, influential authors, and the countries conducting research in this area. Moreover, emerging energy management schemes are investigated, with a focus on intelligent algorithms, optimization techniques, and control strategies, highlighting contributions, key findings, issues, and research gaps. Furthermore, the state-of-the-art research domains of FCEVs are thoroughly discussed in order to explore various research domains, relevant outcomes, and existing challenges. Additionally, this paper addresses open issues and challenges and offers valuable future research opportunities for advancing FCEVs, emphasizing the importance of suitable algorithms, controllers, and optimization techniques to enhance their performance. The outcomes and key findings of this review will be helpful for researchers and automotive engineers in developing advanced methods, control schemes, and optimization strategies for FCEVs towards greener transportation.
Foliar application of silver (Ag-NPs) and copper (Cu-NPs) nanoparticles enhances phenotypic traits and oil quality in Brassica napus L
Nanotechnology represents a burgeoning field of science that enables advanced research across various domains. In recent years, there has been a notable increase in the utilization of silver nanoparticles (AgNPs) for diverse agricultural and industrial applications. Similarly, copper nanoparticles (CuNPs) have significant attention in agriculture due to their cost-effectiveness and practicality. This study aimed to investigate the potential impact of silver and copper nanoparticles on enhancing both the yield and quality of Brassica napus L. cultivar CON-1. The combined foliar application of green synthesized silver and copper nanoparticles at varying concentrations (0, 5, 10, 15, 20, 25, 30, and 35 mg/L) resulted in notable improvements in the growth, yield and quality of Brassica napus L. compared to untreated plants. Particularly, the concentration of 25 mg/L for both silver and copper nanoparticles demonstrated superior outcomes in terms of plant height, number of primary and secondary branches/plant, number of siliques /plant, number of seeds/silique, siliqua length, 1000-seed weight, biological yield/plant, seed yield/plant, oil yield/plant, and harvest index. Furthermore, the nanoparticles effectively reduced the accumulation of erucic acid in the oil, thereby enhancing the overall oil quality of canola. In summary, the application of silver and copper nanoparticles shows promising potential in improving the productivity and quality of Brassica napus L., highlighting their role as beneficial agricultural additives in modern farming practices.
It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation
Sporadic colorectal cancer (CRC) is a leading cause of worldwide cancer mortality. It arises from a complex milieu of host and environmental factors, including genetic and epigenetic changes in colon epithelial cells that undergo mutation, selection, clonal expansion, and transformation. The gut microbiota has recently gained increasing recognition as an additional important factor contributing to CRC. Several gut bacteria are known to initiate CRC in animal models and have been associated with human CRC. In this Review, we discuss the factors that contribute to CRC and the role of the gut microbiota, focusing on a recently described mechanism for cancer initiation, the so-called microbiota-induced bystander effect (MIBE). In this cancer mechanism, microbiota-driven parainflammation is believed to act as a source of endogenous mutation, epigenetic change and induced pluripotency, leading to the cancerous transformation of colon epithelial cells. This theory links the gut microbiota to key risk factors and common histologic features of sporadic CRC. MIBE is analogous to the well-characterized radiation-induced bystander effect. Both phenomena drive DNA damage, chromosomal instability, stress response signaling, altered gene expression, epigenetic modification and cellular proliferation in bystander cells. Myeloid-derived cells are important effectors in both phenomena. A better understanding of the interactions between the gut microbiota and mucosal immune effector cells that generate bystander effects can potentially identify triggers for parainflammation, and gain new insights into CRC prevention.
DCLK1 Regulates Pluripotency and Angiogenic Factors via microRNA-Dependent Mechanisms in Pancreatic Cancer
Stem cell pluripotency, angiogenesis and epithelial-mesenchymal transition (EMT) have been shown to be significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) and many other aggressive cancers. The dysregulation of these processes is believed to play key roles in tumor initiation, progression, and metastasis, and is contributory to PDAC being the fourth leading cause of cancer-related deaths in the US. The tumor suppressor miRNA miR-145 downregulates critical pluripotency factors and oncogenes and results in repressed metastatic potential in PDAC. Additionally, the miR-200 family regulates several angiogenic factors which have been linked to metastasis in many solid tumors. We have previously demonstrated that downregulation of DCLK1 can upregulate critical miRNAs in both in vitro and in vivo cancer models and results in downregulation of c-MYC, KRAS, NOTCH1 and EMT-related transcription factors. A recent report has also shown that Dclk1 can distinguish between normal and tumor stem cells in Apc (min/+) mice and that ablation of Dclk1(+) cells resulted in regression of intestinal polyps without affecting homeostasis. Here we demonstrate that the knockdown of DCLK1 using poly(lactide-co-glycolide)-encapsulated-DCLK1-siRNA results in AsPC1 tumor growth arrest. Examination of xenograft tumors revealed, (a) increased miR-145 which results in decreased pluripotency maintenance factors OCT4, SOX2, NANOG, KLF4 as well as KRAS and RREB1; (b) increased let-7a which results in decreased pluripotency factor LIN28B; and (c) increased miR-200 which results in decreased VEGFR1, VEGFR2 and EMT-related transcription factors ZEB1, ZEB2, SNAIL and SLUG. Specificity of DCLK1 post-transcriptional regulation of the downstream targets of miR-145, miR-200 and let-7a was accomplished utilizing a luciferase-based reporter assay. We conclude that DCLK1 plays a significant master regulatory role in pancreatic tumorigenesis through the regulation of multiple tumor suppressor miRNAs and their downstream pro-tumorigenic pathways. This novel concept of targeting DCLK1 alone has several advantages over targeting single pathway or miRNA-based therapies for PDAC.
Usage of digital library services during COVID-19 pandemic: a study of Indian Institutes of Management (IIMs)
Purpose This paper aims to find out the digital services of management libraries provided during the library closure and the challenges and initiatives the libraries have taken up to fulfill the need of their user community during the pandemic crisis. Design/methodology/approach To meet the purpose of the study, the investigators have used a survey method. An online questionnaire was devised and administered among the Indian Institutes of Management (IIMs) librarians using Microsoft Forms. Findings The study's findings suggested that all the libraries under investigation must avail of various digital library services in the wake of the coronavirus pandemic. Further, the investigators recommend that libraries formulate a disaster preparedness and management plan in the wake of the COVID-19 pandemic so that libraries can prepare themselves for the future. Originality/value The pandemic has affected every aspect of life and changed the digital library services scenario. Thus, it is essential to examine the role libraries have played during the COVID-19 pandemic and distinguish the challenges and initiatives libraries have taken to tackle the problems they faced. This study has been conducted on the digital library services that were provided by the libraries of IIMs.
Mapping of Crowdsourcing Research A Bibliometric Analysis
This study presented a bibliometric examination of the crowdsourcing publications. The objective of this study is to bibliometrically examine the publications related to crowdsourcing in the Science Citation Index Expanded of the Web of Science. A systematic search has been carried out for publications between 2008 and 2017. The parameters analysed included document type, language, most prolific journal, leading countries/territories, institutions and authors in terms of total publications, independent publications, collaborative publications, first authors, corresponding authors and single authors. Highly cited articles and the future direction of hot topics are also investigated. 81 per cent of the total publications are articles. English remains the dominant language and accounted for nearly 100 per cent of the total output. The USA, China and the UK produced 80 per cent of total production. PLOS One was leading journal in terms of total output and total citation till 2016. It was found that 1459 articles, including 1347 first authors, 1443 corresponding authors and 79 single authors, were published by 6973 authors. Fritz Steffen and See Linda were the most prolific authors. This paper will be useful for researchers to know the current trends and achievements of crowd - sourcing research.
An INAR(1) Time Series Model via a Modified Discrete Burr–Hatke with Medical Applications
This paper introduces a flexible discrete transmuted record type discrete Burr–Hatke (TRT-DBH) model that seems suitable for handling over-dispersion and equi-dispersion in count data analysis. Further to the elegant properties of the TRT-DBH, we propose, in the time series context, a first-order integer-valued autoregressive process with TRT-DBH distributed innovations [TRBH-INAR(1)]. The moment properties and inferential procedures of this new INAR(1) process are studied. Some Monte Carlo simulation experiments are executed to assess the consistency of the parameters of the TRBH-INAR(1) model. To further motivate its purpose, the TRBH-INAR(1) is applied to analyze the series of the COVID-19 deaths in Netherlands and the series of infected cases due to the Tularaemia disease in Bavaria. The proposed TRBH-INAR(1) model yields superior fitting criteria than other established competitive INAR(1) models in the literature. Further diagnostics related to the residual analysis and forecasting based on the TRBH-INAR(1) model are also discussed. Based on modified Sieve bootstrap predictors, we provide integer forecasts of future death of COVID-19 and infected of Tularemia.
Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1
Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1 + cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs.